Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology
Tài liệu tham khảo
Tarascon, 2010, Key challenges in future Li-battery research, Philosophical Transactions of the Royal Society A, 327
Yoshimatsu, 1988, Lithium electrode morphology during cycling in lithium cells, Journal of the Electrochemical Society, 135, 2422, 10.1149/1.2095351
Rosso, 2006, Dendrite short-circuit and fuse effect on Li/polymer/Li cells, Electrochimica Acta, 51, 5334, 10.1016/j.electacta.2006.02.004
Xu, 2004, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical Reviews, 104, 4303, 10.1021/cr030203g
Kanamura, 1996, Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF, Journal of the Electrochemical Society, 143, 2187, 10.1149/1.1836979
Nishikawa, 2010, In situ observation of dendrite growth of electrodeposited Li metal, Journal of the Electrochemical Society, 157, A1212, 10.1149/1.3486468
Goodenough, 2010, Challenges for rechargeable Li batteries, Chemistry of Materials, 22, 587, 10.1021/cm901452z
Zhang, 2006, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 162, 1379, 10.1016/j.jpowsour.2006.07.074
Aurbach, 2001, Prototype systems for rechargeable magnesium batteries, Nature, 407, 734
Kim, 2011, Nature Communications, 2, 427, 10.1038/ncomms1435
Matsui, 2011, Study on electrochemically deposited Mg metal, Journal of Power Sources, 196, 7048, 10.1016/j.jpowsour.2010.11.141
Guo, 2010, Study of electronic effect of Grignard reagents on their electrochemical behavior, Electrochemistry Communications, 12, 1671, 10.1016/j.elecom.2010.08.015
Gregory, 1990, Nonaqueous electrochemistry of magnesium, Journal of Electrochemical Science^pV 137, 775, 10.1149/1.2086553
Johansen, 2009, Diffusion and formation energies of adatoms and vacancies on magnesium surfaces, Computation Materials Science, 47, 121, 10.1016/j.commatsci.2009.06.022
Huang, 1998, An atomistic simulator for thin film deposition in three dimensions, Journal of Applied Physics, 84, 3636, 10.1063/1.368539
Kamakoti, 2005, Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys, Physical Review B, 71, 014301, 10.1103/PhysRevB.71.014301
Ling, 2009, First-principles evaluation of carbon diffusion in Pd and Pd-based alloys, Physical Review B, 80, 214202, 10.1103/PhysRevB.80.214202
Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Physical Review B, 49, 14251, 10.1103/PhysRevB.49.14251
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computation Materials Science, 6, 15, 10.1016/0927-0256(96)00008-0
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 59, 1758, 10.1103/PhysRevB.59.1758
Henkelman, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, Journal of Chemical Physics, 113, 9901, 10.1063/1.1329672
Henkelman, 2000, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, Journal of Chemical Physics, 113, 9978, 10.1063/1.1323224
Jiang, 2004, Modelling of surface energies of elemental crystals, Journal of Physics: Condensed Matter, 16, 521, 10.1088/0953-8984/16/4/001
Lodding, 2006, Isotope inter-diffusion and self-diffusion in solid lithium metal, Physica Status Solidi (b), 38, 559, 10.1002/pssb.19700380206
Mantina, 2009, Predicting diffusion coefficients from first-principles via Eyring's reaction rate theory, Defect and Diffusion Forum, 294, 1, 10.4028/www.scientific.net/DDF.294.1
Ganeshan, 2010, First-principles study of self-diffusion in hcp Mg and Zn, Computation Materials Science, 50, 301, 10.1016/j.commatsci.2010.08.019
Chung, 2011, Virtual electrochemical strain microscopy of polycrystalline LiCoO2 films, Journal of the Electrochemical Society, 158, A1083, 10.1149/1.3619775