Health and climate related ecosystem services provided by street trees in the urban environment

Springer Science and Business Media LLC - Tập 15 - Trang 95-111 - 2016
Jennifer A. Salmond1, Marc Tadaki2, Sotiris Vardoulakis3,4,5, Katherine Arbuthnott3,5, Andrew Coutts6,7, Matthias Demuzere6,7,8, Kim N. Dirks9, Clare Heaviside3,5, Shanon Lim1, Helen Macintyre3, Rachel N. McInnes4,10, Benedict W. Wheeler4
1School of Environment, University of Auckland, Auckland, New Zealand
2Department of Geography, University of British Columbia, Vancouver, Canada
3Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
4European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK
5Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
6School of Earth, Atmosphere and Environment, Monash University, Victoria, Australia
7Cooperative Research Centre for Water Sensitive Cities, Australia
8Department of Earth & Environmental Sciences Physical and Regional Geography Research Group - Regional climate studies Celestijnenlaan 200E, KU Leuven, Belgium
9School of Population Health, University of Auckland, Auckland, New Zealand
10Met Office Hadley Centre, Exeter, UK

Tóm tắt

Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed. In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include ‘climate regulation’, ‘air quality regulation’ and ‘aesthetics and cultural services’. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places. We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.

Tài liệu tham khảo

Gómez-Baggethun E, Gren A, Barton DN, Langemeyer J, McPhearson T, O’Farrell P, et al: Urban ecosystem services. Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. Edited by: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C. 2013, Springer, Dordretch, 175-251.

Reid WV, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, et al: Millennium Ecosystem Assessment. Ecosystems and human well-being: synthesis. 2005, Island Press, Washington DC

Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, et al: The impact of heat Islands on mortality in Paris during the August 2003 heat wave. Environ Health Perspect. 2012, 120 (2): 254-259.

Picot X: Thermal comfort in urban spaces: impact of vegetation growth - Case study: Piazza della Scienza, Milan, Italy. Energy Build. 2004, 36 (4): 329-334.

Shashua-Bar L, Hoffman ME: Vegetation as a climatic component in the design of an urban street - An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31 (3): 221-235.

Vailshery LS, Jaganmohan M, Nagendra H: Effect of street trees on microclimate and air pollution in a tropical city. Urban Forestry Urban Greening. 2013, 12 (3): 408-415.

Kurlansik SL, Ibay AD: Seasonal affective disorder. Am Fam Physician. 2012, 86 (11): 1037-1041.

Stovin VR, Jorgensen A, Clayden A: Street trees and stormwater management. Arboricultural J. 2008, 30 (4): 297-310.

Escobedo FJ, Nowak DJ: Spatial heterogeneity and air pollution removal by an urban forest. Landscape Urban Plann. 2009, 90 (3-4): 102-110.

Nowak DJ. Air pollution removal by Chicago’s urban forest. 1994. USDA: Forest Service, Gen. Tech. Rep. NE-186.Retrieved from http://www.nrs.fs.fed.us/pubs/gtr/gtr_ne186.pdf Accessed August 2015.

McPhearson EG: Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosystems. 1997, 1: 49-61.

Gorbachevskaya O, Schreiter H, Kappis C: Wissenschaftlicher Erkenntnisstand über das Feinstaubfilterungspotential von Pflanzen (qualitativ und quantitativ). Ergebnisse der Literaturstudie. Berliner Geographische Arbeiten. 2007, 109: 71-82.

Dirks KN, Sharma P, Salmond JA, Costello SB: Personal exposure to air pollution for various modes of transport in Auckland, New Zealand. Open Atmos Sci J. 2012, 6: 84-92.

Porteous JD, Mastin JF: Soundscape. J Archit Plann Res. 1985, 2 (3): 169-186.

Alcázar P, Cariñanos P, De Castro C, Guerra F, Moreno C, Domínguez-Vilches E, et al: Airborne plane-tree (Platanus hispanica) pollen distribution in the city of Córdoba, South-western Spain, and possible implications on pollen allergy. J Investig Allergol Clin Immunol. 2004, 14 (3): 238-243.

Vardoulakis S, Heaviside C. Health Effects of Climate Change in the UK 2012 – Current evidence, recommendations and research gaps. Health Protection Agency. UK. Available from: http://www.hpa.org.uk/hecc2012 Accessed August 2015.

Emberlin J, Smith M, Close R, Adams-Groom B: Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996-2005. Int J Biometeorol. 2007, 51 (3): 181-191.

Emberlin J: The effects of air pollution on allergenic pollen. Eur Respir Rev. 1998, 8 (53): 164-167.

Hartig T, Mitchell R, de Vries S, Frumkin H: Nature and health. Ann Rev Public Health. 2014, 35: 207-228.

Schroeder H, Flannigan J, Coles R: Residents’ attitudes toward street trees in the UK and U.S. communities. Arboriculture Urban Forestry. 2006, 32 (5): 236-246.

Soares AL, Rego FC, Mc Pherson EG, Simpson JR, Peper PJ, Xiao Q: Benefits and costs of street trees in Lisbon, Portugal. Urban Forestry Urban Greening. 2011, 10 (2): 69-78.

Peckham SC, Duinker PN, Ordóñez C: Urban forest values in Canada: views of citizens in Calgary and Halifax. Urban Forestry Urban Greening. 2013, 12 (2): 154-162.

Heynen N, Perkins HA, Roy P: The political ecology of uneven urban green space: the impact of political economy on race and ethnicity in producing environmental inequality in Milwaukee. Urban Aff Rev. 2006, 42 (1): 3-25.