Diurnal variation in airborne pollen concentration of six allergenic tree taxa and its relationship with meteorological parameters

Aerobiologia - Tập 31 - Trang 457-468 - 2015
Jana Ščevková1, Jozef Dušička1, Karol Mičieta1, Ján Somorčík2
1Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
2Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Tóm tắt

In this study, we have evaluated 2-hourly variations of Betula, Carpinus, Populus, Fraxinus, Cupressaceae–Taxaceae and Pinus pollen concentrations in 24-h periods as well as the impact of weather variables on the diurnal patterns of the mentioned taxa. The study was conducted in Bratislava over a period of nine successive years (2002–2010). Based on the seasonally averaged diurnal patterns, the peak pollen values occurred mostly in the middle of the day between 12 a.m. and 14 p.m., while for Fraxinus, the peaks were denoted also in the afternoon or midnight for Betula and Cupressaceae–Taxaceae. Except for Pinus, the lowest pollen concentrations of all analysed taxa were recorded in the early morning hours between 02 a.m. and 06 a.m. The lowest Pinus pollen concentrations were observed at 22 p.m. We found significant positive relationships between airborne concentrations of pollen recorded at certain times of the 24-h period and air temperature, hours of sunshine and wind speed and a significant negative relationship with relative humidity.

Tài liệu tham khảo

Agashe, S. N., & Caulton, E. (2009). Pollen and spores. Applications with special emphasis on aerobiology and allergy (pp. 167–224). Enfield, New Hampshire: Science Publishers. Aylor, D.E. (1976). Resuspension of particles from plant surfaces by wind. In: G. Sehmel (ed) The symposium on the atmosphere-surface exchange of particles and gases. US Atomic Energy Commission, 792–812. Ballero, M., & Maxia, A. (2003). Pollen spectrum variations in the atmosphere of Cagliari, Italy. Aerobiologia, 19, 251–259. Berggren, B., Nilsson, S., & Boëthius, G. (1995). Diurnal variation of airborne birch pollen at some sites in Sweden. Grana, 34, 251–259. Bryant, R. B., Emberlin, J. C., & Norris-Hill, J. (1989). Vertical variation in pollen abundance in North-Central Lonfon. Aerobiologia, 5, 123–137. Campbell, I. D., McDonald, K., Flannigan, M. D., & Kringayark, J. (1999). Long-distance transport of pollen into the Arctic. Nature, 399, 29–30. Cariñanos, P., Galán, C., Alcazar, P., & Dominguez, E. (1999). Diurnal variation of biological and non-biological particles in the atmosphere of Córdoba, Spain. Aerobiologia, 15, 177–182. Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17, 25–29. Durham, O. C. (1946). The volumetric incidence of atmospheric allergens III—rate of fall of pollen grains in still air. Journal of Allergy, 17, 70–78. Feráková, V., & Jarolímek, I. (2011). Bratislava. In J. G. Kelcey & N. Müller (Eds.), Plants and habitats of European Cities (pp. 79–129). New York: Springer. Galán, C., Tormo, J., Cuevas, J., Infante, F., & Domínguez, E. (1991). Theoretical daily variation patterns of airborne pollen in the south-west of Spain. Grana, 30, 201–209. Gregory, P. H. (1973). The microbiology of the atmosphere (2nd ed., pp. 21–22). Aylesbury: Leonard Hill. Hidalgo, P. J., Galán, C., & Domínguez, E. (1999). Pollen production of the genus Cupressus. Grana, 38, 296–300. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265. Hrubiško, M. (1998). Polinóza–aktuálny problem aj v XXI. Storočí. Časť III: poradie a skrížené reactivity alergénnych druhov stromov, tráv a bylín podľa ich klinického významu. Pollinosis–actual problem also in XXI. Century. Part III: Sequence and cross reactivity of the tree, grass and plant allergen species by their clinical significance. Klinická Imunológia a Alergológia, 2, 9–17. Hynynen, J., Niemistö, P., Viherä-Aarnio, A., Brunner, A., Hein, S., & Velling, P. (2010). Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh. in Northern Europe. Forestry, 83, 103–119. Jackson, S. T., & Lyford, M. E. (1999). Pollen dispersal models in quaternary plant ecology: Assumptions, parameters, and prescriptions. Botanical Review, 65, 39–75. Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of the Total Environment, 326, 151–180. Jurko, A. (1990). Peľové alergény v našej flóre a vegetácii. Pollen allergens in our flora and vegetation. Naše ličivé rastliny, 2, 36–45. Käpylä, M. (1984). Diurnal variation of tree pollen in the air in Finland. Grana, 23, 167–176. Kasprzyk, I., Harmata, K., Myszkowska, D., Stach, A., & Stępalska, D. (2001). Diurnal variation of chosen airborne pollen at five sites in Poland. Aerobiologia, 17, 327–345. Lacey, J. (1991). Aggregation of spores and its effect on aerodynamic behaviour. Grana, 30, 437–445. Latałowa, M., Uruska, A., Pędziszewska, A., Góra, M., & Dawidowska, A. (2005). Diurnal patterns of airborne pollen concentration of the selected tree and herb taxa in Gdańsk (Northern Poland). Grana, 44, 192–201. Latorre, F., & Caccavari, M. A. (2009). Airborne pollen patterns in Mar del Plata atmosphere (Argentina) and its relationship with meteorological conditions. Aerobiologia, 25, 297–312. Lindgren, D., Paule, L., Xihuan, S., Yazdani, R., Segerstrom, U., Wallin, J. E., & Lejdebro, M. L. (1995). Can viable pollen carry Scots pine genes over long distances? Grana, 34, 64–69. Lu, G., Glovsky, M. M., House, J., Flagan, R. C., & Taylor, P. E. (2005). Quantifying emissions of grass pollen and pollen fragments. Journal of Allergy and Clinical Immunology, 115, 21. McDonald, J. E. (1962). Collection and washout of airborne pollens and spores by raindrops. Science, 135, 435–437. Molina, R. T., Rodríguez, A. M., Palacios, I. S., & López, F. G. (1996). Pollen production in anemophilous trees. Grana, 35, 38–46. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20, 179–182. Norris-Hill, J., & Emberlin, J. (1991). Diurnal variation of pollen concentration in the air of North-central London. Grana, 30, 229–234. Ogden, E. C., Hayes, J. V., & Raynor, G. S. (1969). Diurnal patterns of pollen emission in Ambrosia, Phleum, Zea and Ricinus. American Journal of Botany, 56, 16–21. Oszlányi, J. (1997). Forest health and environmental pollution in Slovakia. Environmental Pollution, 98, 389–392. Palacios, I. S., Tormo Molina, R., & Muñoz Rodríguez, A. F. (2007). The importance of interactions between meteorological conditions when interpreting their effect on the dispersal of pollen from homogeneous distributed sources. Aerobiologia, 23, 17–26. Peel, R. G., Ørby, P. V., Skjøth, C. A., Kennedy, R., Schlünssen, V., Smith, M., et al. (2014). Seasonal variation in diurnal atmospheric grass pollen concentration profiles. Biogeosciences, 11, 821–832. Pérez-Badia, R., Rapp, A., Vaquero, C., & Fernández-González, F. (2011). Aerobiological study in east-central Iberian Peninsula: Pollen diversity and dynamics for major taxa. Annals of Agricultural and Environmental Medicine, 18, 99–111. Pérez-Badia, R., Vaquero, C., Sardinero, S., Galán, C., & Garcia-Mozo, H. (2010). Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (Central Spain). Annals of Agricultural and Environmental Medicine, 17, 269–275. Petrášová, M., & Jarolímek, I. (2012). Hardwood floodplain forests in Slovakia: Syntaxonomical revision. Biologia, 67, 889–908. Puc, M. (2012). Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Annals of Agricultural and Environmental Medicine, 19, 660–665. Puc, M., & Wolski, T. (2002). Betula and Populus pollen counts and meteorological conditions in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 9, 65–69. Recio, M., Cabezudo, B., Trigo, M. D. M., & Toro, F. J. (1997). Accumulative air temperature as a predicting parameter for daily airborne olive pollen (Olea europaea L.) during the pre-peak period in Málaga (Western Mediterranean area). Grana, 36, 44–48. Reháčková, T., & Pauditšová, E. (2004). Evaluation of urban green spaces in Bratislava. Boreal Environment Research, 9, 469–477. Ribeiro, H., Oliveira, M., & Abreu, I. (2008). Intradiurnal variation of allergenic pollen in the city of Porto (Portugal). Aerobiologia, 24, 173–177. Rogers, C. A., & Levetin, E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology, 42, 65–72. Rousseau, D. D., Schevin, P., Duzer, D., Cambon, G., Ferrier, J., Jolly, D., & Poulsen, U. (2005). Pollen transport to southern Greenland: new evidences of a late spring long distance transport. Biogeosciences Discussions, 2, 1–19. Sahney, M., & Chaurasia, S. (2008). Seasonal variations of airborne pollen in Allahabad, India. Annals of Agricultural and Environmental Medicine, 15, 287–293. Sánchez Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galan, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250. Sánchez-Reyes, E., Rodríguez de la Cruz, D., Sanchís-Merino, M. E., & Sánchez-Sánchez, J. (2009). First results of Platanus pollen airborne content in the middle-west of the Iberian Peninsula. Aerobiologia, 25, 209–215. Ščevková, J., Dušička, J., Chrenová, J., & Mičieta, K. (2010). Annual pollen spectrum variations in the air of Bratislava (Slovakia): Years 2002–2009. Aerobiologia, 26, 277–287. Sehmel, G. A. (1980). Particle resuspension: A review. Environment International, 4, 107–127. Skjøth, C. A., Ørby, P. V., Becker, T., Geels, C., Schlünssen, V., Sigsgaard, T., et al. (2013). Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences, 10, 541–554. Skjøth, C. A., Smith, M., Brandt, J., & Emberlin, J. (2009). Are the birch trees in Southern England a source of Betula pollen for North London? International Journal of Biometeorology, 53, 75–86. Skjøth, C. A., Sommer, J., Brandt, J., Hvidberg, M., Geels, C., Hansen, K., et al. (2008). Copenhagen—a significant source of birch (Betula) pollen? International Journal of Biometeorology, 52, 453–462. Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411. Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402. Toth, I., Peternel, R., Srnec, L., & Vojniković, B. (2011). Diurnal variation in airborne pollen concentrations of the selected taxa in Zagreb, Croatia. Collegium Antropologicum, 35, 43–50. Trigo, M. M., Recio, M., Toro, F. J., & Cabezudo, B. (1997). Intradiurnal fluctuations in airborne pollen in Málaga (S. Spain): A quantitative method. Grana, 36, 39–43. Whitehead, D. R. (1969). Wind pollination in the angiosperms: Evolutionary and environmental considerations. Evolution, 23, 28–36.