Wind-Turbine and Wind-Farm Flows: A Review

Springer Science and Business Media LLC - Tập 174 - Trang 1-59 - 2019
Fernando Porté-Agel1, Majid Bastankhah1,2, Sina Shamsoddin1
1Wind Engineering and Renewable Energy Laboratory (WIRE), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, Lausanne, Switzerland
2Department of Engineering, Durham University, Durham, UK

Tóm tắt

Wind energy, together with other renewable energy sources, are expected to grow substantially in the coming decades and play a key role in mitigating climate change and achieving energy sustainability. One of the main challenges in optimizing the design, operation, control, and grid integration of wind farms is the prediction of their performance, owing to the complex multiscale two-way interactions between wind farms and the turbulent atmospheric boundary layer (ABL). From a fluid mechanical perspective, these interactions are complicated by the high Reynolds number of the ABL flow, its inherent unsteadiness due to the diurnal cycle and synoptic-forcing variability, the ubiquitous nature of thermal effects, and the heterogeneity of the terrain. Particularly important is the effect of ABL turbulence on wind-turbine wake flows and their superposition, as they are responsible for considerable turbine power losses and fatigue loads in wind farms. These flow interactions affect, in turn, the structure of the ABL and the turbulent fluxes of momentum and scalars. This review summarizes recent experimental, computational, and theoretical research efforts that have contributed to improving our understanding and ability to predict the interactions of ABL flow with wind turbines and wind farms.

Tài liệu tham khảo

Abkar M, Dabiri JO (2017) Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study. J Turbul 18(4):373–389. https://doi.org/10.1080/14685248.2017.1284327

Abkar M, Porté-Agel F (2015a) Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys Fluids 27(3):035,104. https://doi.org/10.1063/1.4913695

Abkar M, Porté-Agel F (2015b) A new wind-farm parameterization for large-scale atmospheric models. J Renew Sust Energy 7(1):013,121. https://doi.org/10.1063/1.4907600

Abkar M, Sharifi A, Porté-Agel F (2016) Wake flow in a wind farm during a diurnal cycle. J Turbul 17(4):420–441. https://doi.org/10.1080/14685248.2015.1127379

Abkar M, Sørensen JN, Porté-Agel F (2018) An analytical model for the effect of vertical wind veer on wind turbine wakes. Energies 11(7):1838. https://doi.org/10.3390/en11071838

Adkins KA, Sescu A (2018) Analysis of near-surface relative humidity in a wind turbine array boundary layer using an instrumented unmanned aerial system and large-eddy simulation. Wind Energy 21(11):1155–1168. https://doi.org/10.1002/we.2220

Aitken ML, Banta RM, Pichugina YL, Lundquist JK (2014a) Quantifying wind turbine wake characteristics from scanning remote sensor data. J Atmos OceanTechnol 31(4):765–787. https://doi.org/10.1175/JTECH-D-13-00104.1

Aitken ML, Kosović B, Mirocha JD, Lundquist JK (2014b) Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the weather research and forecasting model. J Renew Sust Energy 6(3):033,137. https://doi.org/10.1063/1.4885111

Allaerts D, Meyers J (2015) Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer. Phys Fluids 27(6):065,108. https://doi.org/10.1063/1.4922339

Allaerts D, Meyers J (2017) Boundary-layer development and gravity waves in conventionally neutral wind farms. J Fluid Mech 814:95–130. https://doi.org/10.1017/jfm.2017.11

Andersen SJ, Sørensen JN, Mikkelsen RF (2017) Turbulence and entrainment length scales in large wind farms. Philos Trans R Soc A 375(2091):20160,107. https://doi.org/10.1098/rsta.2016.0107

Ansorge T, Fallen M, Günther P, Ruh C, Wolfanger T (1994) Numerical simulation of wake-effects in complex terrain and application of a Reynolds-stress turbulence model. In: Tsipouridis J (ed) Proceedings of the EWEC, Thessaloniki, Greece, vol 94, pp 448–453

Archer CL, Mirzaeisefat S, Lee S (2013) Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation. Geophys Res Lett 40(18):4963–4970. https://doi.org/10.1002/grl.50911

Armstrong A, Waldron S, Whitaker J, Ostle NJ (2014) Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate. Glob Change Biol 20(6):1699–1706. https://doi.org/10.1111/gcb.12437

Bachant P, Wosnik M (2015) Characterising the near-wake of a cross-flow turbine. J Turbul 16(4):392–410. https://doi.org/10.1080/14685248.2014.1001852

Baidya Roy S, Traiteur JJ (2010) Impacts of wind farms on surface air temperatures. Proc Natl Acad Sci 107(42):17,899–17,904. https://doi.org/10.1073/pnas.1000493107

Baidya Roy S, Pacala SW, Walko RL (2004) Can large wind farms affect local meteorology? J Geophys Res Atmos 109(D19):1–6. https://doi.org/10.1029/2004JD004763

Baker RW, Walker SN (1984) Wake measurements behind a large horizontal axis wind turbine generator. Solar Energy 33(1):5–12. https://doi.org/10.1016/0038-092X(84)90110-5

Barrie DB, Kirk-Davidoff DB (2010) Weather response to a large wind turbine array. Atmos Chem Phys 10(2):769–775. https://doi.org/10.5194/acp-10-769-2010

Barthelmie RJ, Jensen LE (2010) Evaluation of wind farm efficiency and wind turbine wakes at the nysted offshore wind farm. Wind Energy 13(6):573–586. https://doi.org/10.1002/we.408

Bastankhah M, Porté-Agel F (2016) Experimental and theoretical study of wind turbine wakes in yawed conditions. J Fluid Mech 806:506–541. https://doi.org/10.1017/jfm.2016.595

Bastankhah M, Porté-Agel F (2017b) A new miniature wind turbine for wind tunnel experiments. Part II: wake structure and flow dynamics. Energies 10(7):923

Bastankhah M, Porté-Agel F (2017c) Wind tunnel study of the wind turbine interaction with a boundary-layer flow: upwind region, turbine performance, and wake region. Phys Fluids 29(065):105. https://doi.org/10.1063/1.4984078

Betz A (1920) Das maximum der theoretisch möglichen ausnützung des windes durch windmotoren. Zeitschrift für das gesamte Turbinenwesen 26:307–309 (in German)

Bhaganagar K, Debnath M (2015) The effects of mean atmospheric forcings of the stable atmospheric boundary layer on wind turbine wake. J Renew Sust Energy 7(1):013,124. https://doi.org/10.1063/1.4907687

Blahak U, Goretzki B, Meis J (2010) A simple parameterization of drag forces induced by large wind farms for numerical weather prediction models. In: Proceedings of European wind energy conference and exhibition, pp 186–189

Bleeg J, Pucell M, Ruisi R, Traiger E (2018) Wind farm blockage and the consequences of neglecting its impact on energy production. Energies 11(7):1609. https://doi.org/10.3390/en11061609

Bodini N, Zardi D, Lundquist JK (2017) Three-dimensional structure of wind turbine wakes as measured by scanning lidar. Atmos Meas Tech 10(8):2881–2896. https://doi.org/10.5194/amt-10-2881-2017

Bremseth J, Duraisamy K (2016) Computational analysis of vertical axis wind turbine arrays. Theor Comput Fluid Dyn 30(5):387–401. https://doi.org/10.1007/s00162-016-0384-y

Burton T, Sharpe D, Jenkins N, Bossanyi E (1995) Wind energy handbook, 1st edn. Wiley, New York

Calaf M, Parlange MB, Meneveau C (2011) Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys Fluids 23(12):126,603. https://doi.org/10.1063/1.3663376

Castellani F, Astolfi D, Mana M, Piccioni E, Becchetti M, Terzi L (2017) Investigation of terrain and wake effects on the performance of wind farms in complex terrain using numerical and experimental data. Wind Energy 20(7):1277–1289. https://doi.org/10.1002/we.2094

Chamorro LP, Guala M, Arndt R, Sotiropoulos F (2012) On the evolution of turbulent scales in the wake of a wind turbine model. J Turbul 13:N27. https://doi.org/10.1080/14685248.2012.697169

Chaviaropoulos P, Douvikas D (1999) Mean wind field prediction over complex terrain in the presence of wind turbine(s). In: Petersen EL, Jensen P, Rave K, Helm P, Ehmann H (eds) EWEC-conference, Nice, France, pp 1208–1211

Christiansen MB, Hasager CB (2005) Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens Environ 98(2):251–268. https://doi.org/10.1016/j.rse.2005.07.009

Churchfield M, Lee S, Moriarty P, Martinez L, Leonardi S, Vijayakumar G, Brasseur J (2012a) A large-eddy simulation of wind-plant aerodynamics. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, aerospace sciences meetings. American Institute of Aeronautics and Astronautics

Churchfield MJ, Lee S, Michalakes J, Moriarty PJ (2012b) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbul 13:N14. https://doi.org/10.1080/14685248.2012.668191

Cleijne J (1993) Results of sexbierum wind farm: single wake measurements. Technical report 93-082, TNO. https://repository.tudelft.nl/view/tno/uuid

Coleman RP, Feingold AM, Stempin CW (1945) Evaluation of the induced-velocity field of an idealized helicoptor rotor. Technical report, DTIC document

Corten G, Schaak P, Hegberg T (2004) Velocity profiles measured above a scaled wind farm. Technical report, Energy Research Centre of the Netherlands. ECN-RX-04-123

Crespo A, Hernández J (1986) A numerical model of wind turbine wakes and wind farms. In: Palz W, Sesto E (eds) European wind energy conference EWEC, Rome, Italy, vol 2, pp 111–115

Crespo A, Manuel F, Grau J, Hernández J (1993) Modelization of wind farms in complex terrain. Application to the Monteahumada wind farm. In: Garrad A, Palz W, Scheller S (eds) Proceedings of the 1993 European community wind energy conference, Travemünde, Germany, pp 436–439

Darrieus GJM (1931) Turbine having its rotating shaft transverse to the flow of current (patent no.: 1835018)

Duckworth A, Barthelmie R (2008) Investigation and validation of wind turbine wake models. Wind Eng 32(5):459–475. https://doi.org/10.1260/030952408786411912

Elliott WP (1958) The growth of the atmospheric internal boundary layer. EOS Trans AGU 39(6):1048–1054. https://doi.org/10.1029/TR039i006p01048

Emeis S (2010) A simple analytical wind park model considering atmospheric stability. Wind Energy 13(5):459–469. https://doi.org/10.1002/we.367

Fernando H, Mann J, Palma J, Lundquist J, Barthelmie R, BeloPereira M, Brown W, Chow F, Gerz T, Hocut C, Klein P, Leo L, Matos J, Oncley S, Pryor S, Bariteau L, Bell T, Bodini N, Carney M, Courtney M, Creegan E, Dimitrova R, Gomes S, Hagen M, Hyde J, Kigle S, Krishnamurthy R, Lopes J, Mazzaro L, Neher J, Menke R, Murphy P, Oswald L, Otarola-Bustos S, Pattantyus A, Rodrigues CV, Schady A, Sirin N, Spuler S, Svensson E, Tomaszewski J, Turner D, van Veen L, Vasiljević N, Vassallo D, Voss S, Wildmann N, Wang Y (2018) The Perdigão: peering into microscale details of mountain winds. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-17-0227.1

Fitch AC, Olson JB, Lundquist JK, Dudhia J, Gupta AK, Michalakes J, Barstad I (2012) Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon Weather Rev 140(9):3017–3038. https://doi.org/10.1175/MWR-D-11-00352.1

Fitch AC, Lundquist JK, Olson JB (2013) Mesoscale influences of wind farms throughout a diurnal cycle. Mon Weather Rev 141(7):2173–2198. https://doi.org/10.1175/MWR-D-12-00185.1

Frandsen S (1992) On the wind speed reduction in the center of large clusters of wind turbines. J Wind Eng Ind Aerodyn 39(1):251–265. https://doi.org/10.1016/0167-6105(92)90551-K

Gaumond M, Réthoré PE, Ott S, Peña A, Bechmann A, Hansen KS (2013) Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm. Wind Energy. https://doi.org/10.1002/we.1625

Glauert H (1935) Airplane propellers. Springer, Berlin, pp 169–360. https://doi.org/10.1007/978-3-642-91487-4_3

Goit JP, Munters W, Meyers J (2016) Optimal coordinated control of power extraction in les of a wind farm with entrance effects. Energies 9(1):29. https://doi.org/10.3390/en9010029

Günther P, Fallen M, Wolfanger T (1993) Numerical wake simulation of a HAWT considering topography and using a mesoscale turbulence model. In: Garrad AD, Palz W, Scheller S (eds) Proceedings of 1993 European community wind energy conference, Travemünde, Germany, pp 448–450

Hassan U (1993) A wind tunnel investigation of the wake structure within small wind turbine farms. Energy Technology Support Unit, Harwell Laboratory, Oxon

Hemon A, Huberson S, Zervos A (1991) Numerical study of wind turbine operation in complex terrain. In: Quarton DC, Fenton VC (eds) Proceedings of the 13th British Wind Energy Association (BWEA) conference, wind energy conversion, Swansea, UK, pp 343–349

Heyes A, Jones R, Smith D (2004) Wandering of wing-tip vortices. In: Proceedings of the 12th international symposium on applications of laser techniques to fluid mechanics, pp 1–20

Hezaveh SH, Bou-Zeid E, Lohry MW, Martinelli L (2017) Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy 20(4):713–730. https://doi.org/10.1002/we.2056

Hirth BD, Schroeder JL (2013) Documenting wind speed and power deficits behind a utility-scale wind turbine. J Appl Meteorol Clim 52(1):39–46. https://doi.org/10.1175/JAMC-D-12-0145.1

Hirth BD, Schroeder JL, Gunter WS, Guynes JG (2015) Coupling doppler radar-derived wind maps with operational turbine data to document wind farm complex flows. Wind Energy 18(3):529–540. https://doi.org/10.1002/we.1701

Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J Atmos Sci 70(6):1513–1527. https://doi.org/10.1175/JAS-D-12-0167.1

Hyvärinen A, Segalini A (2017a) Effects from complex terrain on wind-turbine performance. J Energy Resour Technol 139(5):051,205–051,205–10. https://doi.org/10.1115/1.4036048

Hyvärinen A, Lacagnina G, Segalini A (2018) A wind-tunnel study of the wake development behind wind turbines over sinusoidal hills. Wind Energy 21(8):605–617. https://doi.org/10.1002/we.2181

IEA (2018) Global energy and CO2 status report 2017. Technical report. International Energy Agency. https://www.iea.org/publications/freepublications/publication/GECO2017.pdf

Iungo GV, Porté-Agel F (2014) Volumetric lidar scanning of wind turbine wakes under convective and neutral atmospheric stability regimes. J Atmos OceanTechnol 31(10):2035–2048. https://doi.org/10.1175/JTECH-D-13-00252.1

Iungo GV, Wu YT, Porté-Agel F (2013b) Field measurements of wind turbine wakes with lidars. J Atmos Ocean Technol 30(2):274–287

Ivanova LA, Nadyozhina ED (2000) Numerical simulation of wind farm influence on wind flow. Wind Eng 24(4):257–269. https://doi.org/10.1260/0309524001495620

Jacobson MZ, Archer CL (2012) Saturation wind power potential and its implications for wind energy. Proc Nat Acad Sci. https://doi.org/10.1073/pnas.1208993109

Jafari M, Razavi A, Mirhosseini M (2018a) Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines. Energy 165:792–810. https://doi.org/10.1016/j.energy.2018.09.124

Jafari M, Razavi A, Mirhosseini M (2018b) Effect of steady and quasi-unsteady wind on aerodynamic performance of H-rotor vertical axis wind turbines. J Energy Eng 144(6):04018,065. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000578

Jensen NO (1983) A note on wind turbine interaction. Technical report. Risø-M-2411, Risoe National Laboratory, Roskilde, Denmark

Johnston SJ (1980) Proceedings of the vertical-axis wind turbine (VAWT) design technology seminar for industry, April 1–3, 1980. Technical report, Sandia National Laboratories

Joukowsky N (1920) Windmill of the NEJ type. Transactions of the Central Institute for Aero-Hydrodynamics of Moscow (in Russian)

Käsler Y, Rahm S, Simmet R, Kühn M (2010) Wake measurements of a multi-MW wind turbine with coherent long-range pulsed doppler wind lidar. J Atmos Ocean Technol 27(9):1529–1532. https://doi.org/10.1175/2010JTECHA1483.1

Keck RE, de Maré M, Churchfield MJ, Lee S, Larsen G, Aagaard Madsen H (2014) On atmospheric stability in the dynamic wake meandering model. Wind Energy 17(11):1689–1710. https://doi.org/10.1002/we.1662

Keith DW, DeCarolis JF, Denkenberger DC, Lenschow DH, Malyshev SL, Pacala S, Rasch PJ (2004) The influence of large-scale wind power on global climate. Proc Natl Acad Sci USA 101(46):16,115–16,120. https://doi.org/10.1073/pnas.0406930101

Kirk-Davidoff DB, Keith DW (2008) On the climate impact of surface roughness anomalies. J Atmos Sci 65(7):2215–2234. https://doi.org/10.1175/2007JAS2509.1

Lee S, Churchfield MJ, Moriarty PJ, Jonkman J, Michalakes J (2013) A numerical study of atmospheric and wake turbulence impacts on wind turbine fatigue loadings. J Sol Energy Eng 135(3):031,001–031,001–10. https://doi.org/10.1115/1.4023319

Li C, Zhu S, Lin XuY, Xiao Y (2013) 2.5d large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renew Energy 51(Supplement C):317–330. https://doi.org/10.1016/j.renene.2012.09.011

Liu X, Thomas FO, Nelson RC (2002) An experimental investigation of the planar turbulent wake in constant pressure gradient. Phys Fluids 14(8):2817–2838. https://doi.org/10.1063/1.1490349

Lu H, Porté-Agel F (2015) On the impact of wind farms on a convective atmospheric boundary layer. Boundary-Layer Meteorol 157(1):81–96. https://doi.org/10.1007/s10546-015-0049-1

Machefaux E, Larsen GC, Troldborg N, Gaunaa M, Rettenmeier A (2015) Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements. Wind Energy 18(12):2085–2103. https://doi.org/10.1002/we.1805

Machefaux E, Larsen GC, Koblitz T, Troldborg N, Kelly MC, Chougule A, Hansen KS, Rodrigo JS (2016) An experimental and numerical study of the atmospheric stability impact on wind turbine wakes. Wind Energy 19(10):1785–1805. https://doi.org/10.1002/we.1950 we.1950

Mann J, Angelou N, Arnqvist J, Callies D, Cantero E, Arroyo RC, Courtney M, Cuxart J, Dellwik E, Gottschall J, Ivanell S, Kühn P, Lea G, Matos JC, Palma JMLM, Pauscher L, Na AP, Rodrigo JS, Söderberg S, Vasiljevic N, Rodrigues CV (2017) Complex terrain experiments in the New European Wind Atlas. Philos Trans R Soc A Math Phys Eng Sci 375(2091):20160,101. https://doi.org/10.1098/rsta.2016.0101

Muraca RJ, Guillotte RJ (1976) Wind tunnel investigation of a 14 ft vertical-axis windmill. Technical report, NASA TMX-72663 (National Aeronautics and Space Administration, Langley)

Nguyen VD, Vittecoq P, Bourassa P, Mercadier Y (1981) Étude en souflerie d’un rotor de type Darrieus. Technical report, report MEC-81-2, Mechanical Engineering Department, University of Sherbrooke

Paraschivoiu I (2002) Wind turbine design-with emphasis on Darrieus concept. Polytechnic International Press, Montreal

Peña A, Rathmann O (2014) Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energy 17(8):1269–1285. https://doi.org/10.1002/we.1632

Penna PJ, Kuzina JC (1984) Magdalen islands VAWT summary and index of experimental data; 1980–1982. Technical report, National Research Council of Canada, Ottawa, Ontario

Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

Posa A, Parker CM, Leftwich MC, Balaras E (2016) Wake structure of a single vertical axis wind turbine. Int J Heat Fluid Flow 61(Part A):75–84. https://doi.org/10.1016/j.ijheatfluidflow.2016.02.002

Quarton D (1989) Wake turbulence characterization. Final report from Garrad Hassan and partners to the energy technology support unit of the Department of Energy of the UK

Rajewski DA, Takle ES, Lundquist JK, Oncley S, Prueger JH, Horst TW, Rhodes ME, Pfeiffer R, Hatfield JL, Spoth KK, Doorenbos RK (2013) Crop wind energy experiment (CWEX): observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull Am Meteorol Soc 94(5):655–672. https://doi.org/10.1175/BAMS-D-11-00240.1

REN21 (2017) Renewables global futures report (GFR). Technical report, renew energy policy network for the 21st century (REN21). REN21 Secretariat, Paris. http://www.ren21.net/future-of-renewables/global-futures-report/

REN21 (2018) Renewables 2018—global status report. Technical report, renew energy policy network for the 21st century (REN21). REN21 Secretariat, Paris. http://www.ren21.net/status-of-renewables/global-status-report/

Richards B (1987) Initial operation of Project Eole 4 MW vertical-axis wind turbine generator. In: Windpower ’87, annual conference of American Wind Energy Association, San Francisco

Rogers MM (2002) The evolution of strained turbulent plane wakes. J Fluid Mech 463:53–120. https://doi.org/10.1017/S0022112002008686

Ryan KJ, Coletti F, Elkins CJ, Dabiri JO, Eaton JK (2016) Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine. Exp Fluids 57(3):1–15. https://doi.org/10.1007/s00348-016-2122-z

Sathe A, Mann J, Barlas T, Bierbooms W, van Bussel G (2013) Influence of atmospheric stability on wind turbine loads. Wind Energy 16(7):1013–1032. https://doi.org/10.1002/we.1528

Schepers JG, Obdam TS, Prospathopoulos J (2012) Analysis of wake measurements from the ECN wind turbine test site wieringermeer, EWTW. Wind Energy 15(4):575–591. https://doi.org/10.1002/we.488

Schienbein LA (1979) Development, installation and testing of a wind turbine diesel hybrid—final report. Technical report, DAF Indal Ltd

Segalini A (2017) Linearized simulation of flow over wind farms and complex terrains. Philos Trans R Soc. https://doi.org/10.1098/rsta.2016.0099

Sescu A, Meneveau C (2015) Large-eddy simulation and single-column modeling of thermally stratified wind turbine arrays for fully developed, stationary atmospheric conditions. J Atmos OceanTechnol 32(6):1144–1162. https://doi.org/10.1175/JTECH-D-14-00068.1

Shamsoddin S, Porté-Agel F (2017b) Turbulent planar wakes under pressure gradient conditions. J Fluid Mech. https://doi.org/10.1017/jfm.2017.649

Shamsoddin S, Porté-Agel F (2018a) A model for the effect of pressure gradient on turbulent axisymmetric wakes. J Fluid Mech 837:R3. https://doi.org/10.1017/jfm.2017.864

Shamsoddin S, Porté-Agel F (2018b) Wind turbine wakes over hills. J Fluid Mech 855:671–702. https://doi.org/10.1017/jfm.2018.653

Song J, Liao K, Coulter RL, Lesht BM (2005) Climatology of the low-level jet at the southern great plains atmospheric boundary layer experiments site. J Appl Meteorol 44(10):1593–1606. https://doi.org/10.1175/JAM2294.1

Sorbjan Z (1996) Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer. J Atmos Sci 53(14):2015–2024. https://doi.org/10.1175/1520-0469(1996)053<2015:ECBVTS>2.0.CO;2

Sørensen JN (2011a) Aerodynamic aspects of wind energy conversion. Annu Rev Fluid Mech 43(1):427–448. https://doi.org/10.1146/annurev-fluid-122109-160801

South P, Rangi RS (1975) An experimental investigation of a 12 Ft. diameter high speed vertical-axis wind turbine. Technical report, TR-LA-166, National Research Council of Canada, Ottawa, Ontario

Stefanatos NC, Voutsinas S, Rados K, Zervos A (1994) A combined experimental and numerical investigation of wake effects in complex terrain. Proc EWEC 94:484–90

Stefanatos NC, Morfiadakis E, Glinou G (1996) Wake measurements in complex terrain. In: Proceedings of the 1996 European Union wind energy conference, Göteborg, Sweden, pp 773–777

Stevens RJAM, Meneveau C (2017) Flow structure and turbulence in wind farms. Annu Rev Fluid Mech 49(1):311–339. https://doi.org/10.1146/annurev-fluid-010816-060206

Stevens RJAM, Gayme DF, Meneveau C (2016a) Effects of turbine spacing on the power output of extended wind-farms. Wind Energy 19(2):359–370

Taylor GI (1922) Diffusion by continuous movements. Proc Lond Math Soc s2–20(1):196–212. https://doi.org/10.1112/plms/s2-20.1.196

Taylor GJ, Smith D (1991) Wake measurements over complex terrain. In: Quarton DC, Fenton VC (eds) Proceedings of the 13th British Wind Energy Association (BWEA) conference, wind energy conversion, Swansea, UK, pp 335–342

Templin R (1974) An estimation of the interaction of windmills in widespread arrays. National Aeronautical Establishment. Technical report, laboratory report LTR-LA-171, Ottawa

Templin RJ, Rangi RS (1983) Vertical-axis wind turbine development in Canada. IEE Proc A Phys Sci Meas Instrum Manag Educ Rev 130(9):555–561. https://doi.org/10.1049/ip-a-1.1983.0085

Tescione G, Ragni D, He C, Simao Ferreira CJ, van Bussel GJ (2013) Experimental and numerical aerodynamic analysis of vertical axis wind turbine wake. In: International conference on aerodynamics of offshore wind energy systems and wakes, Lyngby, Denmark

Thomas FO, Liu X (2004) An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient. Phys Fluids 16(5):1725–1745. https://doi.org/10.1063/1.1687410

van Kuik GAM, Peinke J, Nijssen R, Lekou D, Mann J, Sørensen JN, Ferreira C, van Wingerden JW, Schlipf D, Gebraad P, Polinder H, Abrahamsen A, van Bussel GJW, Sørensen JD, Tavner P, Bottasso CL, Muskulus M, Matha D, Lindeboom HJ, Degraer S, Kramer O, Lehnhoff S, Sonnenschein M, Sørensen PE, Künneke RW, Morthorst PE, Skytte K (2016) Long-term research challenges in wind energy—a research agenda by the european academy of wind energy. Wind Energy Sci 1(1):1–39. https://doi.org/10.5194/wes-1-1-2016

Vanderwende BJ, Kosović B, Lundquist JK, Mirocha JD (2016) Simulating effects of a wind-turbine array using LES and RANS. J Adv Model Earth Syst 8(3):1376–1390. https://doi.org/10.1002/2016MS000652

Vittecoq P, Laneville A (1982) Étude en souflerie d’un rotor de type Darrieus. Technical report, report MEC-82-2, Mechanical Engineering Department, University of Sherbrooke, Canada

Voutsinas S, Rados K, Zervos A (1990a) On the analysis of wake effects in wind parks. Wind Eng 14:204–219

Voutsinas SG, Rados KG, Zervos A (1990b) The effect of the non-uniformity of the wind velocity field in the optimal design of wind parks. In: Palz W (ed) Proceedings of the 1990 European community wind energy conference, Madrid, Spain, pp 181–185

Wagner J, Gerz T, Wildmann N, Gramitzky K (2019) Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign. Atmos Chem Phys 19(2):1129–1146. https://doi.org/10.5194/acp-19-1129-2019

Wang C, Prinn RG (2010) Potential climatic impacts and reliability of very large-scale wind farms. Atmos Chem Phys 10(4):2053–2061. https://doi.org/10.5194/acp-10-2053-2010

Wu LK, Porté-Agel F (2017) Flow adjustment inside and around large finite-size wind farms. Energies 10(12):2164. https://doi.org/10.3390/en10122164

Yang X, Sotiropoulos F, Conzemius RJ, Wachtler JN, Strong MB (2014c) Large-eddy simulation of turbulent flow past wind turbines/farms: the virtual wind simulator (VWiS). Wind Energy 18:2025–2045. https://doi.org/10.1002/we.1802

Yang X, Howard KB, Guala M, Sotiropoulos F (2015) Effects of a three-dimensional hill on the wake characteristics of a model wind turbine. Phys Fluids 27(2):025,103. https://doi.org/10.1063/1.4907685

Zhang W, Markfort CD, Porté-Agel F (2013a) Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges. Environ Res Lett 8(1):015,002

Zheng K, Tian W, Qin J, Hu H (2017) Investigation of wind turbine wakes over complex terrain based on actuator disk method. In: 35th AIAA applied aerodynamics conference, AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2017-4073

Zhou L, Tian Y, Baidya Roy S, Thorncroft C, Bosart LF, Hu Y (2012) Impacts of wind farms on land surface temperature. Nat Clim Change 2(7):539–543. https://doi.org/10.1038/nclimate1505

Zilitinkevich SS, Esau IN (2002) On integral measures of the neutral barotropic planetary boundary layer. Boundary-Layer Meteorol 104(3):371–379. https://doi.org/10.1023/A:1016540808958