Turbulence Modeling for the Stable Atmospheric Boundary Layer and Implications for Wind Energy

Applied Scientific Research - Tập 88 - Trang 255-277 - 2011
Bowen Zhou1, Fotini Katopodes Chow1
1Department of Civil and Environmental Engineering, University of California, Berkeley, USA

Tóm tắt

The near-surface structure of atmospheric turbulence affects the design and operation of wind turbines and is especially difficult to predict under stably-stratified conditions. This study uses large-eddy simulation (LES) to explore properties of the stable boundary layer (SBL) using an explicit filtering and reconstruction turbulence modeling approach. Simulations of the atmospheric boundary layer over flat terrain, under both moderately and strongly stable conditions are performed. Results from high-resolution simulations are used to investigate SBL flow structures including mean profiles and turbulence statistics, which are relevant to wind energy applications. The applicability of power-law relations and empirical similarity formulations for predicting wind speed depend on the strength of stratification and are shown to be inadequate. Low-level jets form in the simulations. Under strong stability, vertical wind shear below the jet triggers intermittent turbulence. The associated sporadic “bursting” events are extremely energetic and last longer than the time scale of the largest eddies. Such phenomena can have adverse effects on turbine lifetime and performance.

Tài liệu tham khảo

Archer, C., Jacobson, M.: Spatial and temporal distributions of US winds and wind power at 80 m derived from measurements. J. Geophys. Res. Atmos. 108(D9), 4289(1–20) (2003) Bardina, J., Ferziger, J., Reynolds, W.: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows, 97 pp. Tech. Rep. TF-19. Department of Mechanical Engineering (1983) Basu, S., Holtslag, A.A.M., Van De Wiel, B.J.H., Moene, A.F., Steeneveld, G.-J.: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys. 56(1), 88–99 (2008) Basu, S., Porté-Agel, F.: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J. Atmos. Sci. 63(8), 2074–2091 (2006) Basu, S.,Vinuesa, J., Swift, A.: Dynamic LES modeling of a diurnal cycle. J. Appl. Meteorol. Climatol. 47(4), 1156–1174 (2008) Beare, R., et al.: An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 118(2), 247–272 (2006) Bechmann, A., Sorensen, N.: Hybrid RANS/LES method for wind flow over complex terrain. Wind Energy 13(1), 36–50 (2010) Brasseur, J.G., Wei, T.: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids 22(2), 021303(1–21) (2010) Brown, A., Hobson, J., Wood, N.: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorol. 98(3), 411–441 (2001) Businger, J., Wyngaard, J., Izumi, Y., Bradley, E.: Flux-profile relationships in atmospheric surface layer. J. Atmos. Sci. 28(2), 181–189 (1971) Calaf, M., Meneveau, C., Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22(1), 015110(1–16) (2010) Carper, M., Porté-Agel, F.: The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 5, 040(1–24) (2004) Cederwall, R.T.: Large-eddy simulation of the evolving boundary layer over flat terrain, 231 pp. Ph.D. thesis, Stanford University (2001) Chow, F., Street, R., Xue, M., Ferziger, J.: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62(7, Part 1), 2058–2077 (2005) Chow, F.K., Street, R.L.: Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over askervein hill. J. Appl. Meteorol. Climatol. 48(5), 1050–1065 (2009) Coulter, R., Doran, J.: Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol. 105(2), 329–349 (2002) Derbyshire, S.: Nieuwstadt stable boundary-layer revisited. Q. J. Royal Meteorol. Soc. 116(491, Part A), 127–158 (1990) Grisogono, B., Enger, L.: The angle of near-surface wind-turning in weakly stable boundary layers. In: 19th Symp. Boundary Layer Turbulence (2010) Gullbrand, J., Chow, F.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323–341 (2003) Hogstrom, U.: Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol. 78(3–4), 215–246 (1996) IEC: Wind Turbubine Generator System Part 1: Safety Requirements. International Electrotechnical Commission, Geneva, Switzerland (2005) Jiménez, M., Cuxart, J.: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol. 115(2), 241–261.(2005) Kelley, N., Osgood, R., Bialasiewicz, J., Jakubowski, A.: Using wavelet analysis to assess turbulence/rotor interactions. Wind Energy 3, 121–134 (2000) Kelley, N.D., Jonkman, B.J., Scott, G.N.: The Great Plains turbulence environment: its origins, impact and simulation. Tech. Rep. NREL/CP-500–40176, National Renewable Energy Laboratory, Golden, CO (2006) Kirkpatrick, M., Ackerman, A., Stevens, D., Mansour, N.: On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-topped atmospheric boundary layer. J. Atmos. Sci. 63(2), 526–546 (2006) Kosovic, B., Curry, J.: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci. 57(8), 1052–1068 (2000) Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, A Fluid Dyn. 4(3), 633–635 (1992) Lund, T.S.: On the Use of Discrete Filters for Large Eddy Simulation, pp. 83–95. Tech. rep., Center for Turbulence Research, NASA Ames-Stanford University (1997) Malhi, Y.: The significance of the dual solutions for heat fluxes measured by the temperature-fluctuation method in stable conditions. Boundary-Layer Meteorol. 74(4), 389–396 (1995) Miles, J.: On the stability of heterogeneous shear flows. J. Fluid Mech. 10(4), 496–508 (1961) Nakamura, R., Mahrt, L.: A study of intermittent turbulence with cases-99 tower measurements. Boundary-Layer Meteorol. 114(2), 367–387 (2005) Nieuwstadt, F.: The turbulent structure of the stable, nocturnal boundary-layer. J. Atmos. Sci. 60(20), 2538–2548 (1984) Ohya, Y., Nakamura, R., Uchida, T.: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-Layer Meteorol. 126(3), 349–363 (2008) Paiva, L., Bodstein, G., Menezes, W.: Numerical simulation of atmospheric boundary layer flow over isolated and vegetated hills using RAMS. J. Wind Eng. Ind. Aerodyn. 97(9–10), 439–454 (2009) Palma, J., Castro, F., Ribeiro, L., Rodrigues, A., Pinto, A.: Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain. J. Wind Eng. Ind. Aerodyn. 96(12), 2308–2326 (2008) Porté-Agel, F., Wu, Y., Charmorro, L.: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations. In: 19th Symp. Boundary Layer Turbulence (2010) Saiki, E., Moeng, C., Sullivan, P.: Large-eddy simulation of the stably stratified planetary boundary layer. Boundary-Layer Meteorol. 95(1), 1–30 (2000) Sisterson, D., Frenzen, P.: Nocturnal boundary-layer wind maxima and problem of wind power assessment. Environ. Sci. Technol. 12(2), 218–221 (1978) Smith, K., Randall, G., Kelley, N., Smith, B.: Evaluation of wind shear patterns at midwest wind energy facilities. In: Proceedings American Wind Energy Association (AWEA) Windpower 2002 Conference (2002) Stolz, S., Adams, N., Kleiser, L.: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13(10), 2985–3001 (2001) Storm, B., Dudhia, J., Basu, S., Swift, A., Giammanco, I.: Evaluation of the weather research and forecasting model on forecasting low-level jets: implications for wind energy. Wind Energy 12(1), 81–90 (2009) Stull, R.B.: Stable boundary layer. In: An Introduction to Boundary Layer Meteorology, p. 666. Kluwer Academic Publishers (1988) Sun, J., et al.: Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorol. 105(2), 199–219 (2002) Van de Wiel, B., Moene, A., Hartogensis, O., De Bruin, H., Holtslag, A.: Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J. Atmos. Sci. 60(20), 2509–2522 (2003) Van de Wiel, B., Moene, A., Ronda, R., De Bruin, H., Holtslag, A.: Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: a system dynamics approach. J. Atmos. Sci. 59(17), 2567–2581 (2002) Van de Wiel, B., Ronda, R., Moene, A., De Bruin, H., Holtslag, A.: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model. J. Atmos. Sci. 59(5), 942–958 (2002) van de Wiel, B.J.H., Moene, A.F., De Ronde, W.H., Jonker, H.J.J.: Local similarity in the stable boundary layer and mixing-length approaches: consistency of concepts. Boundary-Layer Meteorol. 128(1), 103–116 (2008) Van Ulden, A., Holtslag, A.: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Meteorol. 24(11), 1196–1207 (1985) Wong, V., Lilly, D.: A comparison of 2 dynamic subgrid closure methods for turbulent thermal-convection. Phys. Fluids 6(2, Part 2), 1016–1023 (1994) Xue, M., Droegemeier, K., Wong, V.: The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol. Atmos. Phys. 75(3–4), 161–193 (2000) Zang, Y., Street, R., Koseff, J.: A dynamic mixed subgrid-scale model and its application to turbulent recirculation-flows. Phys. Fluids, A Fluid Dyn. 5(12), 3186–3196 (1993) Zhou, B., Chow, F.: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci. (2011, in press)