Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29: 275–290
Baker RW, Walker SN (1984) Wake measurements behind a large horizontal axis wind turbine generator. Solar Energy 33: 5–12
Barthelmie R, Larsen G, Pryor S, Jorgensen H, Bergstrom H, Schlez W, Rados K, Lange B, Volund P, Neckelmann S, Mogensen S, Schepers G, Hegberg T, Folkerts L, Magnusson M (2004) ENDOW (efficient development of offshore wind farms): modelling wake and boundary layer interactions. Wind Energy 7: 225–245
Cal RB, Lebrón J, Castillo L, Kang HS, Meneveau C (2010) Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sustain Energy 2: 013,106
Carper MA, Porté-Agel F (2008) Subfilter-scale fluxes over a surface roughness transition Part I: measured fluxes and energy transfer rates. Boundary-Layer Meteorol 126: 157–179
Chamorro LP, Porté-Agel F (2009) A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects. Boundary-Layer Meteorol 132(1): 129–149
Chamorro LP, Porté-Agel F (2010) Thermal stability and boundary-layer effects on wind-turbine wakes: a wind-tunnel study. Boundary-Layer Meteorol 136: 515–533
Deardorff JW (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for Raleigh convection. J Atmos Sci 27: 1211–1213
Dobrev I, Maalouf B, Troldborg N, Massouh F (2008) Investigation of the wind turbine vortex structure. In: 14th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal
Fedorovich E, Kaiser R, Rau M, Plate E (1996) Wind tunnel study of turbulent flow structure in the convective boundary layer capped by a temperature inversion. J Atmos Sci 53: 1273–1289
Fedorovich E, Nieuwstart FTM, Kaiser R (2001a) Numerical and laboratory study of a horizontally evolving convective boundary layer. Part I: Transition regimes and cevelopment of the mixed Layer. J Atmos Sci 58: 70–86
Fedorovich E, Nieuwstart FTM, Kaiser R (2001b) Numerical and laboratory study of a horizontally evolving convective boundary layer. Part II: effects of elevated wind shear and surface roughness. J Atmos Sci 58: 546–560
Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Hojstrup J, Thogersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9: 39–53
Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, U.K., p 316 pp
Hancock PE, Pascheke F (2010) Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow. In: 10th EMS annual meeting, 10th European conference on applications of meteorology (ECAM), Sept 13–17, 2010 in Zurich, Switzerland
Högström U, Asimakopoulos DN, Kambezidis H, Helmis CG, Smedman A (1988) A field study of the wake behind a 2 MW wind turbine. Atmos Environ 22(4): 803–820
Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635: 103–136
Jorgensen FE (1996) The computer-controlled constant temperature ameometer: aspectes of the set-up, probe calibration, data acquisition, and data collection turbulence. Meas Sci Technol 12: 1378–1387
Lebrón J, Castillo L, Cal RB, Kang HS, Meneveau C (2010) Interaction between a wind turbine array and a turbulent boundary layer. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition 4–7 January 2010, Orlando, Florida
Magnusson M, Smedman AS (1994) Influence of atmospheric stablity on wind turbine wakes. Wind Energy 18: 139–152
Medici D, Alfredsson PH (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9: 219–236
Meroney RN, Melbourne WH (1992) Operating ranges of meteorological wind tunnels for the simulation of convective boundary layer (CBL) phenomena. Boundary-Layer Meteorol 61: 145–174
Ohya Y (2001) Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol 98: 57–82
Ohya Y, Uchida T (2004) Laboratory and numerical studies of the convective boundary layer capped by a strong inversion. Boundary-Layer Meteorol 112: 223–240
Porté-Agel F, Lu H, Wu YT, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99: 154–168
Sherry M, Sheridan J, Jacono DL (2010) Horizontal axis wind turbine tip and root vortex measurements. In: 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 5–8 July
Stull R (1988) An introduction to boundary-layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666 pp
Berg GP (2008) Wind turbine power and sound in relation to atmospheric stability. Wind Energy 11: 151–169
Vermeer LJ (2001) A review of wind turbine wake research at TUDelft. In: Proceedings of ASME Wind Energy Symposium, ASME, New York, AIAA-2001-0030, vol 39, pp 103–113
Whale J, Papadopoulos KH, Anderson CG, Helmis CG, Skyner DJ (1997) A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments. Solar Energy 56: 621–633
Whale J, Anderson CG, Bareiss R, Wagner S (2000) An experimental and numerical study of the vortex structure in the wake of a wind turbine. J Wind Eng Ind Aerodyn 84: 1–21
Wharton S, Lundquist JK (2010) Atmospheric stability impacts on power curves of tall wind turbines an analysis of a west coast North American wind farm. LLNL-TR-424425
Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol 132: 129–149
Zhang W, Markfort CM, Porté-Agel F (2012) Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Exp Fluids 52: 1219–1235. doi: 10.1007/s00348-011-1250-8