Wind farm layout optimization using genetic algorithm with different hub height wind turbines
Tài liệu tham khảo
Mostafaeipour, 2011, Wind energy feasibility study for city of Shahrbabak in Iran, Renew Sustain Energy Rev, 15, 2545, 10.1016/j.rser.2011.02.030
Burton, 2001
Joselin Herbert, 2007, A review of wind energy technologies, Renew Sustain Energy Rev, 11, 1117, 10.1016/j.rser.2005.08.004
Akpinar, 2005, An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics, Energy Convers Manage, 46, 1848, 10.1016/j.enconman.2004.08.012
Carta, 2011, Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site, Energy Convers Manage, 52, 1137, 10.1016/j.enconman.2010.09.008
Adaramola, 2011, Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria, Energy Convers Manage, 52, 3363, 10.1016/j.enconman.2011.07.007
Wiser R, Bolinger M. 2011 Wind Technologies Market Report. Lawrence Berkeley National Laboratory; August 2012.
Liu, 2013, Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines, Energy Convers Manage, 67, 8, 10.1016/j.enconman.2012.10.016
Mohammadi, 2013, Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran, Energy Conver Manage, 65, 463, 10.1016/j.enconman.2012.09.004
Hall, 2011, Wind energy conversion with a variable-ratio gearbox: design and analysis, Renewable Energy, 36, 1075, 10.1016/j.renene.2010.08.037
Kenway G, Martin J. Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria, British Columbia, Canada; 2008.
Ramos, 2011, Factorial analysis of selected factors affecting the electricity production of onshore wind farms, Int J Energy Clean Environ., 12, 67, 10.1615/InterJEnerCleanEnv.2012004413
Mosetti, 1994, Optimization of wind turbine positioning in a large windfarms by means of a genetic algorithm, J Wind Eng Ind Aerodyn, 51, 105, 10.1016/0167-6105(94)90080-9
Grady, 2005, Placement of wind turbines using genetic algorithms, Renewable Energy, 30, 259, 10.1016/j.renene.2004.05.007
A. Mittal, Optimization of the layout of large wind farms using genetic algorithm. M.S. Thesis. Case Western Reserve University; 2010.
Acero J, Acevedo J, Rendon M, Oleszewski O. Linear wind farm layout optimization through computational intelligence. In: Proceedings of 8th Mexican international conference on artificial intelligence; 2009. p. 692–703.
Chen L, McDonald E. A new model for wind farm layout optimization with landowner decisions. In: ASME 2011 international design engineering technical conference & computers and information in engineering conference. Washington (DC), United States; 2011.
Mora, 2007, An evaluative algorithm for wind farm optimal design, Neurocomputing, 70, 2651, 10.1016/j.neucom.2006.05.017
Gonzalez, 2010, Optimization of wind farm turbines layout using an evaluative algorithm, Renewable Energy, 35, 1671, 10.1016/j.renene.2010.01.010
Marmidis, 2008, Optimal placement of wind turbines in a wind park using Monte Carlo simulation, Renewable Energy, 33, 1455, 10.1016/j.renene.2007.09.004
Chowdhury, 2012, Unrestricted wind farm layout optimization (UWFLO): investigating key factors influencing the maximum power generation, Renewable Energy, 38, 16, 10.1016/j.renene.2011.06.033
Sorensen, 2006
Jensen, 1983
Katic I, Hojstrup J, Jensen NO. A simple model for cluster efficiency, European wind energy association conference and exhibition. Rome, Italy; 198. p. 407–10.
Frandsen, 1992, On the wind speed reduction in the center of large clusters of wind turbines, J Wind Eng Ind Aerodyn, 39, 251, 10.1016/0167-6105(92)90551-K
Pohlheim H. GEATbx: genetic and evolutionary algorithm toolbox for use with MATLAB; 1999.
Ciprian, 2010, Output power maximization of low-power wind energy conversion systems revisited: possible control solutions, Energy Convers Manage, 51, 305, 10.1016/j.enconman.2009.09.026
<http://www.buildings.gr/enercon/E40/E40.htm> [accessed 01.12.12].
<http://www.en.wind-turbine-models.com/turbine/68/enercon-gmbh/e40-44_600> [accessed 01.12.12].
<http://www.thewindpower.net/turbine_en_173_enercon_e40-600.php> [accessed 01.12.12].
Akpinar, 2009, Estimation of wind energy potential using finite mixture distribution models, Energy Convers Manage, 50, 877, 10.1016/j.enconman.2009.01.007
Carta, 2008, A joint probability density function of wind speed and direction for wind energy analysis, Energy Convers Manage, 49, 1309, 10.1016/j.enconman.2008.01.010
Wiser R, Lantz E, Bolinger M, Hand M. Recent developments in the levelized cost of Energy from US wind power projects. National Renewable Energy Laboratory; 2012.
Kusiak, 2010, Design of wind farm layout for maximum wind energy capture, Renewable Energy, 35, 685, 10.1016/j.renene.2009.08.019
Eroğlu, 2012, Design of wind farm layout using ant colony algorithm, Renewable Energy, 44, 53, 10.1016/j.renene.2011.12.013
Denholm P, Hand M, Jackson M, Ong S. Land-use requirements of modern wind power plants in the United States. Technical, Report NREL/TP-6A2 45834; 2009.
Murata, 1996, Multi-objective genetic algorithm and its applications to flowshop scheduling, Comput Ind Eng, 30, 957, 10.1016/0360-8352(96)00045-9