Wind farm layout optimization using genetic algorithm with different hub height wind turbines

Energy Conversion and Management - Tập 70 - Trang 56-65 - 2013
Ying Chen1, Hua Li1, Kai Jin1, Qing Song1
1Department of Mechanical and Industrial Engineering, Texas A&M University–Kingsville, MSC 191, 700 University Blvd., Kingsville, TX 78363, USA

Tài liệu tham khảo

Mostafaeipour, 2011, Wind energy feasibility study for city of Shahrbabak in Iran, Renew Sustain Energy Rev, 15, 2545, 10.1016/j.rser.2011.02.030 Burton, 2001 Joselin Herbert, 2007, A review of wind energy technologies, Renew Sustain Energy Rev, 11, 1117, 10.1016/j.rser.2005.08.004 Akpinar, 2005, An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics, Energy Convers Manage, 46, 1848, 10.1016/j.enconman.2004.08.012 Carta, 2011, Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site, Energy Convers Manage, 52, 1137, 10.1016/j.enconman.2010.09.008 Adaramola, 2011, Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria, Energy Convers Manage, 52, 3363, 10.1016/j.enconman.2011.07.007 Wiser R, Bolinger M. 2011 Wind Technologies Market Report. Lawrence Berkeley National Laboratory; August 2012. Liu, 2013, Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines, Energy Convers Manage, 67, 8, 10.1016/j.enconman.2012.10.016 Mohammadi, 2013, Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran, Energy Conver Manage, 65, 463, 10.1016/j.enconman.2012.09.004 Hall, 2011, Wind energy conversion with a variable-ratio gearbox: design and analysis, Renewable Energy, 36, 1075, 10.1016/j.renene.2010.08.037 Kenway G, Martin J. Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria, British Columbia, Canada; 2008. Ramos, 2011, Factorial analysis of selected factors affecting the electricity production of onshore wind farms, Int J Energy Clean Environ., 12, 67, 10.1615/InterJEnerCleanEnv.2012004413 Mosetti, 1994, Optimization of wind turbine positioning in a large windfarms by means of a genetic algorithm, J Wind Eng Ind Aerodyn, 51, 105, 10.1016/0167-6105(94)90080-9 Grady, 2005, Placement of wind turbines using genetic algorithms, Renewable Energy, 30, 259, 10.1016/j.renene.2004.05.007 A. Mittal, Optimization of the layout of large wind farms using genetic algorithm. M.S. Thesis. Case Western Reserve University; 2010. Acero J, Acevedo J, Rendon M, Oleszewski O. Linear wind farm layout optimization through computational intelligence. In: Proceedings of 8th Mexican international conference on artificial intelligence; 2009. p. 692–703. Chen L, McDonald E. A new model for wind farm layout optimization with landowner decisions. In: ASME 2011 international design engineering technical conference & computers and information in engineering conference. Washington (DC), United States; 2011. Mora, 2007, An evaluative algorithm for wind farm optimal design, Neurocomputing, 70, 2651, 10.1016/j.neucom.2006.05.017 Gonzalez, 2010, Optimization of wind farm turbines layout using an evaluative algorithm, Renewable Energy, 35, 1671, 10.1016/j.renene.2010.01.010 Marmidis, 2008, Optimal placement of wind turbines in a wind park using Monte Carlo simulation, Renewable Energy, 33, 1455, 10.1016/j.renene.2007.09.004 Chowdhury, 2012, Unrestricted wind farm layout optimization (UWFLO): investigating key factors influencing the maximum power generation, Renewable Energy, 38, 16, 10.1016/j.renene.2011.06.033 Sorensen, 2006 Jensen, 1983 Katic I, Hojstrup J, Jensen NO. A simple model for cluster efficiency, European wind energy association conference and exhibition. Rome, Italy; 198. p. 407–10. Frandsen, 1992, On the wind speed reduction in the center of large clusters of wind turbines, J Wind Eng Ind Aerodyn, 39, 251, 10.1016/0167-6105(92)90551-K Pohlheim H. GEATbx: genetic and evolutionary algorithm toolbox for use with MATLAB; 1999. Ciprian, 2010, Output power maximization of low-power wind energy conversion systems revisited: possible control solutions, Energy Convers Manage, 51, 305, 10.1016/j.enconman.2009.09.026 <http://www.buildings.gr/enercon/E40/E40.htm> [accessed 01.12.12]. <http://www.en.wind-turbine-models.com/turbine/68/enercon-gmbh/e40-44_600> [accessed 01.12.12]. <http://www.thewindpower.net/turbine_en_173_enercon_e40-600.php> [accessed 01.12.12]. Akpinar, 2009, Estimation of wind energy potential using finite mixture distribution models, Energy Convers Manage, 50, 877, 10.1016/j.enconman.2009.01.007 Carta, 2008, A joint probability density function of wind speed and direction for wind energy analysis, Energy Convers Manage, 49, 1309, 10.1016/j.enconman.2008.01.010 Wiser R, Lantz E, Bolinger M, Hand M. Recent developments in the levelized cost of Energy from US wind power projects. National Renewable Energy Laboratory; 2012. Kusiak, 2010, Design of wind farm layout for maximum wind energy capture, Renewable Energy, 35, 685, 10.1016/j.renene.2009.08.019 Eroğlu, 2012, Design of wind farm layout using ant colony algorithm, Renewable Energy, 44, 53, 10.1016/j.renene.2011.12.013 Denholm P, Hand M, Jackson M, Ong S. Land-use requirements of modern wind power plants in the United States. Technical, Report NREL/TP-6A2 45834; 2009. Murata, 1996, Multi-objective genetic algorithm and its applications to flowshop scheduling, Comput Ind Eng, 30, 957, 10.1016/0360-8352(96)00045-9