Towards Bidirectional and Coadaptive Robotic Exoskeletons for Neuromotor Rehabilitation and Assisted Daily Living: a Review
Tóm tắt
Tài liệu tham khảo
N. Yagn, “Apparatus for facilitating walking”. Patent US 440684 A, 1890.
H. Alfven and H. Kleinwächter, “Syntelmann—und die möglichen Konsequenzen,” Bild der Wissenschaft, 1970.
G. Cobb, “Walking motion”. Patent US 2010482 A, 1934.
Y. Sankai, “HAL: hybrid assistive limb based on cybernics,” Kaneko M., Nakamura Y. (eds) Robotic Research. Springer Tracts in Advanced Robotics, 2010, https://doi.org/10.1007/978-3-642-14743-2_3.
A. Zoss, H. Kazerooni and A. Chu, “On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX),” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3465–3472, 2005, doi: https://doi.org/10.1109/IROS.2005.1545453.
I. Jo, Y. Park and J. Bae, “A teleoperation system with an exoskeleton interface,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1649–1654, 2013, doi: https://doi.org/10.1109/AIM.2013.6584333.
M. Mallwitz, N. Will, J. Teiwes and E. A. Kirchner, “The CAPIO active upper body exoskeleton and its application for teleoperation,” Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation, 2015.
T. Platz and S. Roschka, “Rehabilitative Therapie bei Armparese nach Schlaganfall,” Neurol. Rehabil., pp. 81–106, 2009.
T. Platz, “Rehabilitative Therapie bei Armlähmungen nach einem Schlaganfall. S2-Leitlinie der Deutschen Gesellschaft für Neurorehabilitation,” NeuroGeriatrie, pp. 104–116, 2011.
J. Nitschke, D. Kuhn, K. Fischer and K. Röhl, “Comparison of the usability of the rewalk, Ekso and HAL,” Special edition from: OrthOpädietechnik, p. 22, 2014.
T. Noda, N. Sugimoto, J. Furukawa, M.-A. Sato, S.-H. Hyon and J. and Morimoto, “Brain-controlled exoskeleton robot for BMI rehabilitation,” Proc. 12th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), pp. 21–27, 2012, doi: https://doi.org/10.1109/HUMANOIDS.2012.6651494.
E. A. Kirchner, N. Will, M. Simnofske, L. M. Vaca Benitez, B. Bongardt, M. M. Krell, S. Kumar, M. Mallwitz, A. Seeland, M. Tabie, H. Wöhrle, M. Yüksel, A. Heß, R. Buschfort and F. Kirchner, “Recupera-reha: exoskeleton technology with integrated biosignal analysis for sensorimotor rehabilitation,” 2. Transdiziplinäre Konferenz “Technische Unterstüzungssysteme, die die Menschen wirklich wollen”, pp. 504–517, 2016.
J. Law and E. Martin, Concise Medical Dictionary, 10 ed., Oxford University Press, 2020.
Strickland, “Good-bye, wheelchair,” IEEE Spectrum, pp. 30–32, 2012, doi: https://doi.org/10.1109/MSPEC.2012.6117830.
Kirchner, E.A. et al., “Exoskelette der künstlichen Intelligenz in der klinischen Rehabilitation,” in Digitale Transformation von Dienstleistungen im Gesundheitswesen, Wiesbaden, Springer Gabler, 2019, pp. 413–435, https://doi.org/10.1007/978-3-658-23987-9_21.
Otto Bock HealthCare Deutschland GmbH, “Elektronisch gesteuertes Kniegelenksystem E-MAG Active,” 2021. [Online]. Available: https://www.ottobock.de/orthesen/produkte/bein-und-knieorthesen/e-mag-active/. [Accessed 11 February 2022].
Bauerfeind AG, “MalleoLoc,” Bauerfeind AG, 2022. [Online]. Available: https://www.bauerfeind.de/de/produkte/orthesen/fuss/details/product/malleoloc. [Accessed 11 February 2022].
BORT medical, “Produkte—BORT OsoTract Oberarm-Schulter-Orthese,” BORT GmbH, 2022. [Online]. Available: https://www.bort.com/de/produktdetail.html?product=121300. [Accessed 11 February 2022].
eksoBIONICS, “eksoNR,” Ekso Bionics, 2021. [Online]. Available: https://eksobionics.com/eksonr/. [Accessed 11 February 2022].
E. A. Kirchner, N. Will, M. Simnofske, L. M. Vaca Benitez, B. Bongardt, M. M. Krell, S. Kumar, M. Mallwitz, A. Seeland, M. Tabie, H. Wöhrle, M. Yüksel, A. Heß, R. Buschfort and F. Kirchner, “Recupera-reha: exoskeleton technology with integrated biosignal analysis for sensorimotor rehabilitation,” in Zweite transdiziplinäre Konferenz “Technische Unterstützungssysteme, die die Menschen wirklich wollen”, 2016.
Otto Bock HealthCare Deutschland GmbH, “Paexo Neck,” [Online]. Available: https://paexo.com/wp-content/uploads/2019/11/2019-10363-66-Beileger-PaexoNeck-DL-DE-OBE-20190926.pdf. [Accessed 11 February 2022].
Balser F, Desai R, Ekizoglou A, Bai S. A novel passive shoulder exoskeleton designed with variable stiffness mechanism. IEEE Robotics and Automation Letters. 2022;7(2):2748–54. https://doi.org/10.1109/LRA.2022.3144529.
Maurice P, Camernik J, Gorjan D, Schirrmeister B, Bornmann J, Tagliapietra L, Latella C, Pucci D, Fritzsche L, Ivaldi S, Babic J. Objective an subjective effects of a passive exoskeleton on overhead work. IEEE Trans Neural Syst Rehabil Eng. 2020;28(1):152–64. https://doi.org/10.1109/TNSRE.2019.2945368.
Skelex, “Skelex 360-XFR,” [Online]. Available: https://www.skelex.com/skelex-360-xfr/. [Accessed 11 February 2022].
Otto Bock HealthCare GmbH, “Agilium Freestep 3.0,” 2021. [Online]. Available: https://www.ottobock.de/orthesen/produkte/bein-und-knieorthesen/agilium-freestep-3.0/. [Accessed 11 February 2022].
HMT, “Moon,” Human Mechanical Technologies, 2022. [Online]. Available: https://www.hmt-france.com/fr/ourExoskeletons/moon. [Accessed 11 February 2022].
Hunic GmbH, “SoftExo Carry,” HUNIC SoftExo, 2022. [Online]. Available: https://hunic.com/softexo-carry/. [Accessed 11 February 2022].
Laevo Exoskeletons, “The Laevo V2,” [Online]. Available: https://www.laevo-exoskeletons.com/en/laevo-v2. [Accessed 11 February 2022].
German Bionic, “CrayX: Exoskelett für manuelles Handling,” German Bionic Systems GmbH, 2022. [Online]. Available: https://www.germanbionic.com/5th-generation/. [Accessed 11 February 2022].
eksoBIONICS, “eksoUE—upper extremity exoskeleton,” Ekso Bionics, 2020. [Online]. Available: https://eksobionics.com/de/eksoue-de/. [Accessed 11 February 2022].
SuitX, “Recreational exoskeleton—BoostX Knee,” suitx, 2021. [Online]. Available: https://www.suitx.com/boostknee. [Accessed 11 February 2022].
A. F. Ruiz, A. Forner-Cordero, E. Rocon and J. L. Pons, “Exoskeletons for rehabilitation and motor control,” The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 601–606, 2006, doi: https://doi.org/10.1109/BIOROB.2006.1639155.
Hunic GmbH, “Hunic SoftExo Care,” HUNIC SoftExo, 2022. [Online]. Available: https://hunic.com/softexo-care/. [Accessed 11 February 2022].
SuitX, “shieldX | suitX,” suitx, 2021. [Online]. Available: https://www.suitx.com/shieldx. [Accessed 11 February 2022].
R. Robotics, “Forge Performance - Roam,” 2021. [Online]. Available: https://www.roamrobotics.com/forge. [Accessed 11 February 2022].
H. Kazerooni, J.-L. Racine, L. Huang and R. Steger, “On the control of the Berkeley Lower Extremity Exoskeleton (BLEEX),” Proceedinfs of the 2005 IEEE International Conference on Robotics and Automation, pp. 4353–4360, 2005, doi: https://doi.org/10.1109/ROBOT.2005.1570790.
German Research Center for Artifical Intelligence and Universität Bremen, “The CAPIO active upper body exoskeleton,” [Online]. Available: https://www.dfki.de/fileadmin/user_upload/import/7383_slides_RoboAssist_2014_Mallwitz.pdf. [Accessed 10 February 2022].
M. Folgheraiter, M. Jordan, L. M. Vaca Benitez, F. Grimminger, S. Schmidt, J. Albiez and F. Kirchner, “A highly integrated low pressure fluid servo-valve for applications in wearable robotic systems,” Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, 2010.
H. Beik-Mohammadi, M. Kerzel, B. Pleintinger, T. Hulin, P. Reisich, A. Schmidt, A. Pereira, S. Wermter and N. Y. Lii, “Model mediated teleoperation with a hand-arm exoskeleton in long time delays using reinforcement learning,” 2020 29th IEEE Conference on Robot Human Interactive Communication (RO-MAN), pp. 713–720, 2020, doi: https://doi.org/10.1109/RO-MAN47096.2020.9223477..
Tendo, “Get a grip | Tendo—for people, not for symptoms,” tendoforpeople, [Online]. Available: https://www.tendoforpeople.se/tendo. [Accessed 11 February 2022].
A. U. Pehlivan, D. P. Losey and M. K. O’Malley, “Minimal assist-as-needed controller for upper limb robotic rehabilitation,” IEEE Transactions on Robotics, pp. 113–124, 2016, doi: https://doi.org/10.1109/TRO.2015.2503726.
Y. Zhou, J. She, Z.-T. Liu, C. Xu and Z. Yang, “Implementation of impedance control for lower-limb rehabilitation robots,” 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), pp. 700–704, 2021, doi: https://doi.org/10.1109/ICPS49255.2021.9468210.
B. Laschowski, W. McNally, A. Wong and J. McPhee, “Environment classification for robotic leg prostheses and exoskeletons using deep convolutional neural networks,” Front. Neurorobot., 04 February 2022, https://doi.org/10.3389/fnbot.2021.
L. Gerez, A. Dwivedi and M. Liarokapis, “A hybrid, soft exoskeleton glove equipped with a telescopic extra thumb and abduction capabilities,” IEEE International Conference on Robotics and Automation (ICRA), pp. 9100–9106, 2020, doi: https://doi.org/10.1109/ICRA40945.2020.9197473.
M. S. Al Maamari, S. S. Al Badi, A. Saleem, M. Mesbah and E. Hassan, “Design of a brain controlled hand exoskeleton for patients with motor neuron diseases,” 10th IEEE International Symposium on Mechatronics and its Application, 2015, https://doi.org/10.1109/ISMA.2015.7373470.
L. Randazzo, I. Iturrate, S. Perdikis and J. d. R. Millán, “mano: a wearable hand exoskeleton for activities of daily living and neurorehabilitation,” IEEE Robotics and Automation Letters, pp. 500–507, 2018, doi: https://doi.org/10.1109/LRA.2017.2771329.
L. Citi, R. Poli, C. Cinel and F. Sepulveda, “P300-based BCI mouse with genetically-optimized analogue control,” IEEE Trans Neural Syst Rehabil Eng., pp. 51–61, 2008, doi: https://doi.org/10.1109/TNSRE.2007.913184.
Chowdhury A, Raza H, Dutta A, Prasad G. EEG-EMG based hybrid brain computer interface for troggering hand exoskeleton for neuro-rehabilitation. Preceedings of the Advances in Robotics. 2017. https://doi.org/10.1145/3132446.3134909.
A. Seeland, L. Manca, F. Kirchner and E. A. Kirchner, “Spatio-temporal comparison between ERD/ERS and MRCP-based movement prediction,” Proceedings of the 8th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-15), pp. 219–226, 2015, https://doi.org/10.5220/0005214002190226.
S. He, Y. Zhou, T. Yu, R. Zhang, Q. Huang, L. Chuai, M. U. Mustafa, Z. Gu, Z. L. Yu, H. Tan and Y. Li, “EEG- and EOG-based asynchronous hybrid BCI: a system integrating a sepller, a web browser, an e-mail client, and a file explorer,” IEEE Transactions On Neural Systems and Rehabilitation Engineering, pp. 519–530, 2014, https://doi.org/10.1109/TNSRE.2019.2961309.
Y.-T. Pan, Z. Lamb, J. Macievich and K. A. Strausser, “A vibrotactile feedback device for balance rehabilitation in EksoGT robotic exoskeleton,” 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 569–576, 2018, doi: https://doi.org/10.1109/BIOROB.2018.8487677.
C. Freeman, E. Rogers, A.-M. Hughes, J. H. Burridge and K. Meadmore, “Iterative learning control in health care: electrical stimulation and robotic-assisted upper-limb stroke rehabilitation,” IEEE Control Syst., pp. 18–43, 2012, doi: https://doi.org/10.1109/MCS.2011.2173261.
S. A. Murray, R. J. Farris, M. Golfarb, C. Hartigan, C. Kandilakis and D. Truex, “FES coupled with a powered exoskeleton for cooperative muscle contribution in persons with paraplegia,” Annu Int Conf IEEE Eng Med Biol Soc, pp. 2788–2792, 2018, doi: https://doi.org/10.1109/EMBC.2018.8512810.
I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng and Q. Yuan, “Solving rubik’s cube with a robot hand,” 2019. [Online]. Available: https://arxiv.org/pdf/1910.07113v1.pdf. [Accessed 21 February 2022].
J. Lin, Z. Ma, R. Gomez, K. Nakamura, B. He and G. Li, “A review on interactive reinforcement learning from human social feedback,” IEEE Access, pp. 120757–120765, 2020, doi: https://doi.org/10.1109/ACCESS.2021.3096662.
T. Luo, Y. Fan, J. Lv and C. Zhou, “Deep reinforcement learning from error-related potentials via an EEG-based brain-computer interface,” IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 697–701, 2018, doi: https://doi.org/10.1109/BIBM.2018.8621183.
S. K. Ehrlich and G. Cheng, “Human-agent co-adaptation using error-related potentials,” Journal of Neural Engineering, p. 066014, 2018, https://doi.ord/https://doi.org/10.1088/1741-3553/aae069.
C. Stahlhut, N. Navarro-Guerrero, C. Weber and S. Wermter, “Interaction in reinforcement learning reduces the need for finely tuned hyperparameters in complex tasks,” Kognitive Systeme, 2015, https://doi.org/10.17185/duepublico/40718.
C. Arzate Cruz and T. Igarashi, “A survey of interactive reinforcement learning: design principles and open challenges,” Proceedings of the 2020 ACM Designing Interactive Sytsmes Conference, pp. 1195–1209, 2020, https://doi.org/10.1145/3357236.3395525.
S. K. Kim and E. A. Kirchner, “Classifier transferability in the detection of error related potentials from observation to interaction,” IEEE International Conference on Systems, Man, and Cybernetics (SMC’13), pp. 3360–3365, 2013, https://doi.ord/https://doi.org/10.1109/SMC.2013.573.
S. K. Kim and E. A. Kirchner, “Handling few training data: classifier transfer between different types of error-related potentials,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp. 320–332, 2016, https://doi.org/10.1109/TNSRE.2015.2507868.