Evaluation of safety and performance of the self balancing walking system Atalante in patients with complete motor spinal cord injury

J. Kerdraon1, Jean Gabriel Previnaire2, Maegan Tucker3, P. Coignard1, Willy Allègre1, Emmanuel Knappen2, Aaron D. Ames3
1Centre mutualiste de Kerpape, Ploemeur cedex, France
2Centre Jacques Calvé – Fondation Hopale, Berck-sur-Mer Cedex, France
3California Institute of Technology, Pasadena, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lieutaud T, Ndiaye A, Laumon B, Chiron M. Spinal cord injuries sustained in road crashes are not on the decrease in france: a study based on epidemiological trends. J Neurotrauma. 2012;29:479–87.

Brown-Triolo DL, Roach MJ, Nelson K, Triolo RJ. Consumer perspectives on mobility: implications for neuroprosthesis design. J Rehabil Res Dev. 2002;39:659–69.

Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016;9:455–66.

Mehrholz J, Harvey LA, Thomas S, Elsner B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017;55:722–9.

Kandilakis C, Sasso-Lance E. Exoskeletons for personal use after spinal cord injury. Arch Phys Med Rehabil. 2021;102:331–7.

Contreras-Vidal JL, Bhagat NA, Brantley J, Cruz-Garza JG, He Y, Manley Q, et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016;13:031001.

Barbareschi G, Richards R, Thornton M, Carlson T, Holloway C. Statically vs dynamically balanced gait: analysis of a robotic exoskeleton compared with a human. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6728–31.

Ames A. Human-inspired control of bipedal walking robots. IEEE Trans Autom Control. 2014;59:1115–30.

Agrawal AHO, Hereid A, Finet S, Masselin M, Praly L, Ames AD, et al. First steps towards translating HZD control of bipedal robots to decentralized control of exoskeletons. IEEE Access. 2017;5:9919–34.

Gurriet TFS, Boeris G, Duburcq A, Hereid A, Harib O, Masselin M, et al. Towards restoring locomotion for paraplegics: realizing dynamically stable walking on exoskeletons. 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 2804–2811.

Bouhassira D, Attal N, Fermanian J, Alchaar H, Gautron M, Masquelier E, et al. Development and validation of the Neuropathic Pain Symptom Inventory. Pain 2004;108:248–57.

Krogh K, Christensen P, Sabroe S, Laurberg S. Neurogenic bowel dysfunction score. Spinal Cord. 2006;44:625–31.

Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–4.

Costa P, Perrouin-Verbe B, Colvez A, Didier J, Marquis P, Marrel A, et al. Quality of life in spinal cord injury patients with urinary difficulties. Dev Valid qualiveen Eur Urol. 2001;39:107–13.

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.

Becker M, Jaschinski T, Eikermann M, Mathes T, Buhn S, Koppert W, et al. A systematic decision-making process on the need for updating clinical practice guidelines proved to be feasible in a pilot study. J Clin Epidemiol. 2018;96:101–9.

Altman D. Statistics with confidence: Confidence Intervals and Statistical Guidelines. 2nd Edition ed: BMJ Books; 2000, pp 45–56.

Bland M. An introduction to Medical Statistics. Third Edition ed. USA: Oxford University Press; 2000, pp 14–52.

Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535–46.

Louie DR, Eng JJ, Lam T. Spinal cord injury research evidence research T. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil. 2015;12:82.

van Hedel HJ, Dietz V, Curt A. Assessment of walking speed and distance in subjects with an incomplete spinal cord injury. Neurorehabil Neural Repair. 2007;21:295–301.

Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, et al. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015;52:147–58.

Escalona MJ, Brosseau R, Vermette M, Comtois AS, Duclos C, Aubertin-Leheudre M, et al. Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: a cross-sectional study. Ann Phys Rehabil Med. 2018;61:215–23.

Huang Q, Yu L, Gu R, Zhou Y, Hu C. Effects of robot training on bowel function in patients with spinal cord injury. J Phys Ther Sci. 2015;27:1377–8.

Miller LE, Herbert WG. Health and economic benefits of physical activity for patients with spinal cord injury. Clinicoecon Outcomes Res. 2016;8:551–8.

Poritz JMP, Taylor HB, Francisco G, Chang SH. User satisfaction with lower limb wearable robotic exoskeletons. Disabil Rehabil Assist Technol. 2020;15:322–7.

Lynch SM, Leahy P, Barker SP. Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Phys Ther. 1998;78:128–33.

Sprigle S, Maurer C, Holowka M. Development of valid and reliable measures of postural stability. J Spinal Cord Med. 2007;30:40–9.

Collot A. Le rôle joué par le muscle grand dorsal dans l'équilibre assis du paraplégique de niveau métamérique élevé,. Annales de Kinésithérapie. 1979;6:283–301.

Pearcey GEP, Zehr EP. Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res. 2019;237:2319–29.

Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, et al. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res. 2016;234:3059–81.