Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control

Scientific Reports - Tập 5 Số 1
Iñaki Iturrate1,2, Ricardo Chavarriaga3, Luis Montesano2, Javier Mínguez2, José del R. Millán3
1Defitech Chair in Brain-Machine Interface, Center for Neuroprosthetics & Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2Instituto de Investigación en Ingeniería de Aragón, Dpto. de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Spain
3Defitech Chair in Brain-Machine Interface, Center for Neuroprosthetics &Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Tóm tắt

Abstract

Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey all necessary information, thus imposing natural limits on the complexity of tasks that can be performed. Here we demonstrate an alternative and complementary BMI paradigm that overcomes that limitation by decoding cognitive brain signals associated with monitoring processes relevant for achieving goals. In our approach the neuroprosthesis executes actions that the subject evaluates as erroneous or correct and exploits the brain correlates of this assessment to learn suitable motor behaviours. Results show that, after a short user’s training period, this teaching BMI paradigm operated three different neuroprostheses and generalized across several targets. Our results further support that these error-related signals reflect a task-independent monitoring mechanism in the brain, making this teaching paradigm scalable. We anticipate this BMI approach to become a key component of any neuroprosthesis that mimics natural motor control as it enables continuous adaptation in the absence of explicit information about goals. Furthermore, our paradigm can seamlessly incorporate other cognitive signals and conventional neuroprosthetic approaches, invasive or non-invasive, to enlarge the range and complexity of tasks that can be accomplished.

Từ khóa


Tài liệu tham khảo

Carmena, J. M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, 193–208 (2003).

Millán, J. d. R., Renkens, F., Mouriño, J. & Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51, 1026–1033 (2004).

Musallam, S., Corneil, B. D., Greger, B., Scherberger, H. & Andersen, R. A. Cognitive control signals for neural prosthetics. Science 305, 162–163 (2004).

Ethier, C., Oby, E. R., M. J. Bauman, L. E. Miller . Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 (2012).

Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet 381, 557–564 (2013).

Wolpaw, J. R. & McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004).

Santhanam G., Ryu, S. I., Yu, B. M., Afshar, A. & Shenoy, K. V. A high-performance brain-computer interface. Nature 442, 195–198 (2006).

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., Liu, C. & Andersen, R. A. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348, 906–910 (2015).

Scott, S. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5, 534–546 (2004).

Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

Ball, T., Schulze-Bonhage, A., Aertsen, A. & Mehring, C. Differential representation of arm movement direction in relation to cortical anatomy and function. J. Neural Eng. 6, 016006 (2009).

Fried, I., Mukamel, R. & Kreiman, G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69, 548–562 (2011).

Schalk, G., Wolpaw, J. R., McFarland, D. J. & Pfurtscheller, G. EEG-based communication: Presence of an error potential. Clin Neurophysiol, 111 (12), 2138–2144 (2000).

Chavarriaga, R., Sobolewski, A. & Millán, J. d. R. Errare machinale est: The use of error-related potentials in brain-machine interfaces. Front. Neurosci. 8, 208 (2014).

Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

Falkenstein, M., Hoormann, J., Christ, S. & Hohnsbein, J. ERP components on reaction errors and their functional significance: A tutorial. Biol. Psychol. 51, 87–107 (2000).

Ullsperger, M., Fischer, A. G., Nigbur, R. & Endrass T. Neural mechanisms and temporal dynamics of performance monitoring. Trends Cogn. Sci. 18, 259–267 (2014).

van Schie, H. T., Mars, R. B., Coles, M. G. H. & Bekkering, H. Modulation of activity in medial frontal and motor cortices during error observation. Nat. Neurosci. 7, 549–554 (2004).

Ferrez, P. W. & Millán, J. d. R. Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans. Biomed. Eng. 55, 923–929 (2008).

Chavarriaga, R. & Millán, J. d. R. Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 381–388 (2010).

Mahmoudi, B. & Sanchez, J. C. A symbiotic brain-machine interface through value-based decision making. PloS One 6, e14760 (2011).

Milekovic, T., Ball, T., Schulze-Bonhage, A., Aertsen, A. & Mehring C. Error-related electrocorticographic activity in humans during continuous movements. J. Neural Eng. 9, 026007 (2012).

Ferrez, P. W. & Millán, J. d. R. Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. Proc. 4th Int. BCI Workshop & Training Course, Graz (Austria), 197–202. Graz: Verlag der TU Graz (2008, September).

Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).

Iturrate, I., Chavarriaga, R., Montesano, L., Minguez, J. & Millán, J. d. R. Latency correction of event-related potentials between different experimental protocols. J. Neural Eng. 11, 036005 (2014).

Iturrate, I., Chavarriaga, R., Montesano, L., Minguez, J. & Millán, J. d. R. Latency correction of error-related potentials reduces BCI calibration time. 6th Brain-Computer Interface Conference 2014, Graz (Austria), 10.3217/978-3-85125-378-8-64 (2014, September).

Brázdil, M. et al. Error processing—evidence from intracerebral ERP recordings. Exp. Brain Res. 146, 460–466 (2002).

Spüler, M. et al. Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clin. Neurophysiol. 123, 1328–1337 (2012).

Orsborn, A. L., Dangi, S., Moorman, H. G. & Carmena, J. M. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 468–477 (2012).

Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

Gürel, T. & Mehring, C. Unsupervised adaptation of brain-machine interface decoders. Front. Neurosci. 6, 164 (2012).

Wiering, M. & van Otterlo, M. Reinforcement Learning: State of the Art (Springer, 2012).

DiGiovanna, J., Mahmoudi, B., Fortes, J., Principe, J. C. & Sanchez, J. C. Coadaptive brain-machine interface via reinforcement learning. IEEE Trans. Biomed. Eng. 56, 54–64 (2009).

Iturrate, I., Montesano, L. & Minguez J. Single trial recognition of error-related potentials during observation of robot operation. Proc. 32nd Annual Int. Conf. IEEE Eng. Med. Biol. Soc., Buenos Aires (Argentina), 4181–4184, 10.1109/IEMBS.2010.5627380 (2010, August).

Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. & Winter, A. L. Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature 203, 380–384 (1964).

Garipelli, G., Chavarriaga, R. & Millán, J. d. R. Single trial analysis of slow cortical potentials: A study on anticipation related potentials. J. Neural Eng. 10, 036014 (2013).

Iturrate, I., Montesano, L. & Minguez, J. Shared-control brain-computer interface for a two dimensional reaching task using EEG error-related potentials. Proc. 35th Annual Int. Conf. IEEE Eng. Med. Biol. Soc., Osaka (Japan), 5258–5262, 10.1109/EMBC.2013.6610735 (2013, June).

Iturrate, I., Montesano, L., Chavarriaga, R., Millán, J. d. R. & Minguez, J. Spatiotemporal filtering for EEG error related potentials. Proc. 5th Int Brain-Computer Interface Conf., Graz (Austria), 12–15. Graz: Graz: Verlag der TU Graz (2011, September).

Waldert, S. et al. Hand movement direction decoded from MEG and EEG. J. Neurosci. 28, 1000–1008 (2008).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B. 57, 289–300 (1995).