A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bogue, 2015, Robotic exoskeletons: a review of recent progress, Ind. Robot, 42, 10.1108/IR-08-2014-0379
Iturrate, 2015, Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control, Sci. Rep., 5, 10.1038/srep13893
Millán, 2010, Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges, Front. Neurosci., 4
Perdikis, 2014, Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller, J. Neural Eng., 11, 036003, 10.1088/1741-2560/11/3/036003
Carlson, 2013, Brain-controlled wheelchairs: a robotic architecture, IEEE Robot. Autom. Mag., 20, 65, 10.1109/MRA.2012.2229936
Tavella, 2010, Towards natural non-invasive hand neuroprostheses for daily living, 126
Müller-Putz, 2005, EEG-based neuroprosthesis control: a step towards clinical practice, Neurosci. Lett., 382, 169, 10.1016/j.neulet.2005.03.021
Contreras-Vidal, 2013, NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton, 1579
Lee, 2016, Endogenous control of powered lower-limb exoskeleton, 115
Onose, 2012, On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: A clinical test and long-term post-trial follow-up, Spinal Cord, 50, 599, 10.1038/sc.2012.14
Wolpaw, 2000, Brain-computer interface research at the Wadsworth Center, IEEE Trans. Rehabil. Eng., 8, 222, 10.1109/86.847823
Ramos-Murguialday, 2012, Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses, PLoS One, 7, e47048, 10.1371/journal.pone.0047048
Polich, 2007, Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 118, 2128, 10.1016/j.clinph.2007.04.019
Regan, 1989
Millán, 2008, Non-invasive brain-machine interaction, Int. J. Pattern Recognit. Artif. Intell., 22, 959, 10.1142/S0218001408006600
Elbert, 1980, Biofeedback of slow cortical potentials. I, Electroencephalogr. Clin. Neurophysiol., 48, 293, 10.1016/0013-4694(80)90265-5
Garipelli, 2013, Single trial analysis of slow cortical potentials: A study on anticipation related potentials, J. Neural Eng., 10, 036014, 10.1088/1741-2560/10/3/036014
Pfurtscheller, 2001, Motor imagery and direct brain-computer communication, Proc. IEEE, 89, 1123, 10.1109/5.939829
Tonin, 2011, Brain-controlled telepresence robot by motor-disabled people, 4227
Millán, 2004, Noninvasive brain-actuated control of a mobile robot by human EEG, IEEE Trans. Biomed. Eng., 51, 1026, 10.1109/TBME.2004.827086
Galán, 2008, A brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robots, Clin. Neurophysiol., 119, 2159, 10.1016/j.clinph.2008.06.001
Pfurtscheller, 1999, Event-related eeg/meg synchronization and desynchronization: basic principles, Clin. Neurophysiol., 110, 1842, 10.1016/S1388-2457(99)00141-8
Kilicarslan, 2013, High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton, 5606
http://www.rexbionics.com
http://www.argomedtec.com
Kawamoto, 2005, Power assist method based on phase sequence and muscle force condition for HAL, Adv. Robot., 19, 717, 10.1163/1568553054455103
Banala, 2009, Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Trans. Neural Syst. Rehabil. Eng., 17, 2, 10.1109/TNSRE.2008.2008280
Rea, 2013, X1: A robotic exoskeleton for in-space countermeasures and dynamometry
Quintero, 2011, Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals, 1
Müller-Putz, 2011, Tools for brain-computer interaction: a general concept for a hybrid BCI, Front. Neuroinform., 5, 10.3389/fninf.2011.00030
Casson, 2010, Wearable electroencephalography, IEEE Eng. Med. Biol. Mag., 29, 44, 10.1109/MEMB.2010.936545
Leeb, 2015, Towards independence: a BCI telepresence robot for people with severe motor disabilities, Proc. IEEE, 103, 969, 10.1109/JPROC.2015.2419736
Steyrl, 2015, Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier, Biomed. Eng.
Akram, 2015, An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier, Comput. Biol. Med., 56, 30, 10.1016/j.compbiomed.2014.10.021
M. Bentlemsan, E.-T. Zemouri, D. Bouchaffra, B. Yahya-Zoubir, K. Ferroudji, Random forest and filter bank common spatial patterns for EEG-based motor imagery classification, in: 5th International Conference on Intelligent System Modeling and Simulation ISMS’14, 2014
Steyrl, 2013, Random forests for feature selection in non-invasive brain-computer interfacing, 207
Verikas, 2011, Mining data with random forests: a survey and results of new tests, Pattern Recognit., 44, 330, 10.1016/j.patcog.2010.08.011
Díaz-Uriarte, 2006, Gene selection and classification of microarray data using random forest, BMC Bioinform., 7, 3, 10.1186/1471-2105-7-3
Shotton, 2013, Real-time human pose recognition in parts from single depth images, Commun. ACM, 56, 116, 10.1145/2398356.2398381
Doumanoglou, 2014, Autonomous active recognition and unfolding of clothes using random decision forests and probabilistic planning, 987
Tang, 2014, Latent regression forest: structured estimation of 3d articulated hand posture, 3786
Jasper, 1958, The ten twenty electrode system of the international federation, Electroencephalogr. Clin. Neurophysiol., 10, 371
http://www.arduino.cc
Ramoser, 2000, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng., 8, 441, 10.1109/86.895946
Bertrand, 1985, A theoretical justification of the average reference in topographic evoked potential studies, Electroencephalogr. Clin. Neurophysiol. Evoked Potentials, 62, 462, 10.1016/0168-5597(85)90058-9
Percival, 1993
Gramfort, 2013, MEG and EEG data analysis with MNE-Python, Front. Neurosci., 7, 10.3389/fnins.2013.00267
Leeb, 2013, Transferring brain–computer interfaces beyond the laboratory: successful application control for motor-disabled users, Artif. Intell. Med., 59, 121, 10.1016/j.artmed.2013.08.004
Zhang, 2000, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell., 22, 1330, 10.1109/34.888718
Bradski, 2000, The opencv library, Dr. Dobb’s J., 25, 120
M.Y. Yang, W. Förstner, Plane detection in point cloud data, in: Proceedings of the 2nd int conf on machine control guidance, Bonn, vol. 1, 2010, pp. 95–104
Pulli, 1993, Range image segmentation based on decomposition of surface normals
Chavarriaga, 2010, Learning from EEG error-related potentials in noninvasive brain-computer interfaces, IEEE Trans. Neural Syst. Rehabil. Eng., 18, 381, 10.1109/TNSRE.2010.2053387