A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers

Robotics and Autonomous Systems - Tập 90 - Trang 15-23 - 2017
Kyuhwa Lee1, Dong Liu1,2, Laetitia Perroud1, Ricardo Chavarriaga1, José del R. Millán1
1Defitech Chair in Brain–Machine Interface lab, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2School of Automation Science and Electrical Engineering, Beihang University (BUAA), China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bogue, 2015, Robotic exoskeletons: a review of recent progress, Ind. Robot, 42, 10.1108/IR-08-2014-0379

Iturrate, 2015, Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control, Sci. Rep., 5, 10.1038/srep13893

Millán, 2010, Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges, Front. Neurosci., 4

Perdikis, 2014, Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller, J. Neural Eng., 11, 036003, 10.1088/1741-2560/11/3/036003

Carlson, 2013, Brain-controlled wheelchairs: a robotic architecture, IEEE Robot. Autom. Mag., 20, 65, 10.1109/MRA.2012.2229936

Tavella, 2010, Towards natural non-invasive hand neuroprostheses for daily living, 126

Müller-Putz, 2005, EEG-based neuroprosthesis control: a step towards clinical practice, Neurosci. Lett., 382, 169, 10.1016/j.neulet.2005.03.021

Contreras-Vidal, 2013, NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton, 1579

Lee, 2016, Endogenous control of powered lower-limb exoskeleton, 115

Onose, 2012, On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: A clinical test and long-term post-trial follow-up, Spinal Cord, 50, 599, 10.1038/sc.2012.14

Wolpaw, 2000, Brain-computer interface research at the Wadsworth Center, IEEE Trans. Rehabil. Eng., 8, 222, 10.1109/86.847823

Nicolas-Alonso, 2012, Brain computer interfaces, a review, Sensors, 12, 1211, 10.3390/s120201211

Ramos-Murguialday, 2012, Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses, PLoS One, 7, e47048, 10.1371/journal.pone.0047048

Polich, 2007, Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 118, 2128, 10.1016/j.clinph.2007.04.019

Regan, 1989

Millán, 2008, Non-invasive brain-machine interaction, Int. J. Pattern Recognit. Artif. Intell., 22, 959, 10.1142/S0218001408006600

Elbert, 1980, Biofeedback of slow cortical potentials. I, Electroencephalogr. Clin. Neurophysiol., 48, 293, 10.1016/0013-4694(80)90265-5

Garipelli, 2013, Single trial analysis of slow cortical potentials: A study on anticipation related potentials, J. Neural Eng., 10, 036014, 10.1088/1741-2560/10/3/036014

Pfurtscheller, 2001, Motor imagery and direct brain-computer communication, Proc. IEEE, 89, 1123, 10.1109/5.939829

Tonin, 2011, Brain-controlled telepresence robot by motor-disabled people, 4227

Millán, 2004, Noninvasive brain-actuated control of a mobile robot by human EEG, IEEE Trans. Biomed. Eng., 51, 1026, 10.1109/TBME.2004.827086

Galán, 2008, A brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robots, Clin. Neurophysiol., 119, 2159, 10.1016/j.clinph.2008.06.001

Pfurtscheller, 1999, Event-related eeg/meg synchronization and desynchronization: basic principles, Clin. Neurophysiol., 110, 1842, 10.1016/S1388-2457(99)00141-8

Kilicarslan, 2013, High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton, 5606

http://www.rexbionics.com

http://www.argomedtec.com

Strickland, 2012, Good-bye, wheelchair, IEEE Spectr., 49, 30, 10.1109/MSPEC.2012.6117830

Kawamoto, 2005, Power assist method based on phase sequence and muscle force condition for HAL, Adv. Robot., 19, 717, 10.1163/1568553054455103

Banala, 2009, Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Trans. Neural Syst. Rehabil. Eng., 17, 2, 10.1109/TNSRE.2008.2008280

Rea, 2013, X1: A robotic exoskeleton for in-space countermeasures and dynamometry

Quintero, 2011, Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals, 1

Müller-Putz, 2011, Tools for brain-computer interaction: a general concept for a hybrid BCI, Front. Neuroinform., 5, 10.3389/fninf.2011.00030

Casson, 2010, Wearable electroencephalography, IEEE Eng. Med. Biol. Mag., 29, 44, 10.1109/MEMB.2010.936545

Leeb, 2015, Towards independence: a BCI telepresence robot for people with severe motor disabilities, Proc. IEEE, 103, 969, 10.1109/JPROC.2015.2419736

Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324

Steyrl, 2015, Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier, Biomed. Eng.

Akram, 2015, An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier, Comput. Biol. Med., 56, 30, 10.1016/j.compbiomed.2014.10.021

M. Bentlemsan, E.-T. Zemouri, D. Bouchaffra, B. Yahya-Zoubir, K. Ferroudji, Random forest and filter bank common spatial patterns for EEG-based motor imagery classification, in: 5th International Conference on Intelligent System Modeling and Simulation ISMS’14, 2014

Steyrl, 2013, Random forests for feature selection in non-invasive brain-computer interfacing, 207

Verikas, 2011, Mining data with random forests: a survey and results of new tests, Pattern Recognit., 44, 330, 10.1016/j.patcog.2010.08.011

Díaz-Uriarte, 2006, Gene selection and classification of microarray data using random forest, BMC Bioinform., 7, 3, 10.1186/1471-2105-7-3

Shotton, 2013, Real-time human pose recognition in parts from single depth images, Commun. ACM, 56, 116, 10.1145/2398356.2398381

Doumanoglou, 2014, Autonomous active recognition and unfolding of clothes using random decision forests and probabilistic planning, 987

Tang, 2014, Latent regression forest: structured estimation of 3d articulated hand posture, 3786

Jasper, 1958, The ten twenty electrode system of the international federation, Electroencephalogr. Clin. Neurophysiol., 10, 371

http://www.arduino.cc

Ramoser, 2000, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng., 8, 441, 10.1109/86.895946

Bertrand, 1985, A theoretical justification of the average reference in topographic evoked potential studies, Electroencephalogr. Clin. Neurophysiol. Evoked Potentials, 62, 462, 10.1016/0168-5597(85)90058-9

Percival, 1993

Gramfort, 2013, MEG and EEG data analysis with MNE-Python, Front. Neurosci., 7, 10.3389/fnins.2013.00267

Leeb, 2013, Transferring brain–computer interfaces beyond the laboratory: successful application control for motor-disabled users, Artif. Intell. Med., 59, 121, 10.1016/j.artmed.2013.08.004

Zhang, 2000, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell., 22, 1330, 10.1109/34.888718

Bradski, 2000, The opencv library, Dr. Dobb’s J., 25, 120

M.Y. Yang, W. Förstner, Plane detection in point cloud data, in: Proceedings of the 2nd int conf on machine control guidance, Bonn, vol. 1, 2010, pp. 95–104

Pulli, 1993, Range image segmentation based on decomposition of surface normals

Chavarriaga, 2010, Learning from EEG error-related potentials in noninvasive brain-computer interfaces, IEEE Trans. Neural Syst. Rehabil. Eng., 18, 381, 10.1109/TNSRE.2010.2053387

Chavarriaga, 2014, Errare machinale est: the use of error-related potentials in brain-machine interfaces, Front. Neurosci., 8, 10.3389/fnins.2014.00208