Measuring the Improvement of the Interaction Comfort of a Wearable Exoskeleton

Springer Science and Business Media LLC - Tập 4 - Trang 285-302 - 2012
Michele Folgheraiter1, Mathias Jordan1, Sirko Straube2, Anett Seeland1, Su Kyoung Kim1,2, Elsa Andrea Kirchner1,2
1Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
2Robotics Lab, University of Bremen, Bremen, Germany

Tóm tắt

This paper presents a study conducted to evaluate and optimize the interaction experience between a human and a 9 DOF arm-exoskeleton by the integration of predictions based on electroencephalographic signals (EEG). Due to an ergonomic kinematic architecture and the presence of three contact points, which enable the reflection of complex force patterns, the developed exoskeleton takes full advantage of the human arm mobility, allowing the operator to tele-control complex robotic systems in an intuitive way via an immersive simulation environment. Taking into account the operator’s percept and a set of constraints on the exoskeleton control system, it is illustrated how to quantitatively enhance the comfort and the performance of this sophisticated human–machine interface. Our approach of integrating EEG signals into the control of the exoskeleton guarantees the safety of the operator in any working modality, while reducing effort and ensuring functionality and comfort even in case of possible misclassification of the EEG instances. Tests on different subjects with simulated movement prediction values were performed in order to prove that the integration of EEG signals into the control architecture can significantly smooth the transition between the control states of the exoskeleton, as revealed by a significant decrease in the interaction force.

Tài liệu tham khảo

Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(PT.2):331–348 Alamgir M, Grosse-Wentrup M, Altun Y (2010) Multi-task learning for Brain-Computer Interfaces. In: Proceedings of the 13th international conference on artificial intelligence and statistics. JMLR: workshop and conference proceedings, vol 9 Apolloni B, Malchiodi D, Mesiano C (2004) An attention monitoring system for high demanding operational tasks. In: Computational intelligence for homeland security and personal safety. CIHSPS 2004. Proceedings of the 2004 IEEE international conference, pp 23–29 Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei DY, Schneider L, Houdayer E, Chen X, Hallett M (2011) Prediction of human voluntary movement before it occurs. Clin Neurophysiol 122(2):364–372. doi:16/j.clinph.2010.07.010 Bergamasco M, Allotta B, Bosio L, Ferretti L, Parrini G, Prisco G, Salsedo F, Sartini G (1994) An arm exoskeleton system for teleoperation and virtual environments applications. In: Robotics and automation, proceedings, 1994 IEEE international conference, vol 2, pp 1449–1454. doi:10.1109/ROBOT.1994.351286 Birbaumer N (2006) Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 6(43):517–532 Blankertz B, Curio G, Müller K (2002) Classifying single trial EEG: towards brain computer interfacing. In: Advances in neural information processing systems 14: proceedings of the 2001 conference, pp 157–164. MIT Press, Cambridge Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller K, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabil Eng 11(2):127 Blankertz B, Dornhege G, Lemm S, Krauledat M, Curio G, Müller KR (2006) The Berlin brain–computer interface: machine learning based detection of user specific brain states. J Univers Comput Sci 12(6):581–607 Borghesan G, Melchiorri C (2008) Model and modeless friction compensation: application to a defective haptic interface. In: Lecture notes in computer science, vol 5024. Springer, Berlin, pp 94–103 Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm Fazli S, Popescu F, Danóczy M, Blankertz B, Müller K, Grozea C (2009) Subject-independent mental state classification in single trials. Neural Netw 22(9):1305–1312. doi:10.1016/j.neunet.2009.06.003 Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703 Fleischer C, Wege A, Kondak K, Hommel G (2006) Application of emg signals for controlling exoskeleton robots. Biomed Tech (Berl, Z) 51(5–6):314–319 Folgheraiter M, Bongardt B, Albiez J, Kirchner F (2008) A bio-inspired haptic interface for tele-robotics applications. In: IEEE international conference on robotics and biomemetics (ROBIO-2008), Thailand, Bangkok Folgheraiter M, Bongardt B, Schmidt S, de Gea Fernandéz J, Albiez J, Kirchner F (2009) Design of an arm exoskeleton using an hybrid motion-capture and model-based technique. In: IEEE international conference on robotics and automation (ICRA-2009), May 12–17, 2009, Kobe, Japan Folgheraiter M, de Gea Fernandéz J, Bongardt B, Albiez J, Kirchner F (2009) Bio-inspired control of an arm exoskeleton joint with active-compliant actuation system. Appl Bionics Biomech 6(2):193–204 Folgheraiter M, Jordan M, Benitez LMV, Grimminger F, Schmidt S, Albiez J, Kirchner F (2011) Development of a low-pressure fluidic servo-valve for wearable haptic interfaces and lightweight robotic systems, 1st edn. In: Lecture notes in electrical engineering, vol 89. Springer, Berlin. ISBN 978-3-642-19538-9 Folgheraiter M, Kirchner EA, Seeland A, Kim SK, Jordan M, Wöhrle H, Bongardt B, Schmidt S, Albiez J, Kirchner F (2011) A multimodal brain-arm interface for operation of complex robotic systems and upper limb motor recovery. In: Proc 4th int conf biomedical electronics and devices, Rome Hayashi T, Kawamoto H, Sankai Y (2005) Control method of robot suit hal working as operator’s muscle using biological and dynamical information. In: Intelligent robots and systems (IROS 2005). 2005 IEEE/RSJ international conference, pp 3063–3068. doi:10.1109/IROS.2005.1545505 Herrmann G, Melhuish C (2010) Towards safety in human robot interaction. Int J Soc Robot 2(3):217–219 Hesse S, Schmidt H, Werner C, Bardeleben A (2003) Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 16(6):705–710 Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10-20 system electrode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382 Ibáñez J, Serrano J, del Castillo M, Barrios L, Gallego J, Rocon E (2011) An EEG-based design for the online detection of movement intention. Adv Comput Intell 370–377 Kirchner EA, Metzen JH, Duchrow T, Kim SK, Kirchner F (2009) Assisting telemanipulation operators via real-time Brain Reading. In: Lemgoer Schriftenreihe zur industriellen Informationstechnik, Paderborn Kirchner EA, Wöhrle H, Bergatt C, Kim SK, Metzen JH, Kirchner F (2010) Towards operator monitoring via brain reading—an eeg-based approach for space applications. In: Proceedings of the 10th international symposium on artificial intelligence, robotics and automation in space Kornhuber H, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Plügers Archiv gesamte Physiol Menschen Tiere 284:1–17 Krauledat M, Tangermann M, Blankertz B, Müller K (2008) Towards zero training for Brain-Computer interfacing. PLoS ONE 3(8):e2967. doi:10.1371/journal.pone.0002967 Labonte D, Boissy P, Michaud F (2010) Comparative analysis of 3-d robot teleoperation interfaces with novice users. IEEE Trans Syst Man Cybern, Part B, Cybern 40(5):1331–1342. doi:10.1109/TSMCB.2009.2038357 Li Y, Gao X, Liu H, Gao S (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6):1019–1025 Li Y, Guan C, Li H, Chin Z (2008) A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognit Lett 29(9):1285–1294. doi:10.1016/j.patrec.2008.01.030 Mataric MJ (1994) Learning motor skills by imitation. In: AAAI spring symposium toward physical interaction and manipulation. Stanford University Metzen JH, Kim SK, Kirchner EA (2011) Minimizing calibration time for brain reading. In: Mester R, Felsberg M (eds) Pattern recognition. Lecture notes in computer science, vol 6835. Springer, Berlin/Heidelberg, pp 366–375 Millán JR, Galán F, Vanhooydonck D, Lew E, Philips J, Nuttin M (2009) Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In: Proc 31st annu conf IEEE eng med biol soc, Minneapolis, MN, pp 3361–3364 Morash V, Bai O, Furlani S, Lin P, Hallett M (2008) Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin Neurophysiol 119(11):2570–2578. doi:16/j.clinph.2008.08.013 Ott R, Gutiérrez M, Thalmann D, Vexo F (2005) Improving user comfort in haptic virtual environments trough gravity compensation. In: Proceedings of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. IEEE Computer Society Press, Los Alamitos, pp 401–409 Perry J, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408–417. doi:10.1109/TMECH.2007.901934 Pfurtscheller G, Müller-Putz G, Scherer R, Neuper C (2008) Rehabilitation with brain–computer interface systems. Computer 41(10):58–65 Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA, Myklebust BM, Jacobson RD, Hyde JS (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45(5):919–924 Rao S, Carloni R, Stramigioli S (2010) Stiffness and position control of a prosthetic wrist by means of an emg interface. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE, pp 495–498 Repperger D, Remis S, Merrill G (1990) Performance measures of teleoperation using an exoskeleton device. In: Robotics and automation, proceedings, 1990 IEEE international conference on, vol 1, pp 552–557. doi:10.1109/ROBOT.1990.126038 Riley JM, Kaber DB, Draper JV (2004) Situation awareness and attention allocation measures for quantifying telepresence experiences in teleoperation. Hum Factors Ergon Manuf Service Ind 14(1):51–67. doi:10.1002/hfm.10050. URL http://dx.doi.org/10.1002/hfm.10050 Rocon E, Ruiz A, Pons J, Belda-Lois J, Sanchez-Lacuesta J (2005) Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Robotics and automation, ICRA 2005. Proceedings of the 2005 IEEE international conference on, pp 2271–2276. doi:10.1109/ROBOT.2005.1570451 Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Carrozza M, Ijspeert A (2011) Human–robot synchrony: flexible assistance using adaptive oscillators. IEEE Trans Biomed Eng 58(4):1001–1012 Rosen J, Brand M, Fuchs M, Arcan M (2001) A myosignal-based powered exoskeleton system. IEEE Trans Syst Man Cybern, Part A, Syst Hum 31(3):210–222. doi:10.1109/3468.925661 Rosen J, Perry J, Manning N, Burns S, Hannaford B (2005) The human arm kinematics and dynamics during daily activities—toward a 7 dof upper limb powered exoskeleton. In: Advanced robotics. ICAR’05, proceedings, 12th international conference on, pp 532–539. doi:10.1109/ICAR.2005.1507460 Santucci E, Balconi E (2009) The multicomponential nature of movement-related cortical potentials: functional generators and psychological factors. Neuropsychol Trends 5:59–84 Schiele A (2009) Ergonomics of exoskeletons: Subjective performance metrics. In: Intelligent robots and systems, IROS 2009. IEEE/RSJ international conference on, pp 480–485. doi:10.1109/IROS.2009.5354029 Schiele A, van der Helm F (2006) Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng 14(4):456–469 Stastn J, Sovka P High-resolution movement EEG classification. Comput Intell Neurosci 54925 (2007) Tsagarikis N, Jafari A, Caldwell D (2010) A novel variable stiffness actuator: minimizing the energy requirements for the stiffness regulation. In: Engineering in medicine and biology society (EMBC). 2010 annual international conference of the IEEE, pp 1275–1278. doi:10.1109/IEMBS.2010.5626413 Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van Der Kooij H (2008) Compliant actuation of rehabilitation robots. IEEE Robot Autom Mag 15(3):60–69. doi:10.1109/MRA.2008.927689 Van Den Broek E, Lisý V, Westerink J, Schut M, Tuinenbreijer K (2009) Biosignals as an advanced man-machine interface. In: Proceedings of the second international conference on health informatics, HEALTHINF 2009, Porto, Portugal, pp 15–24 Wang B, Wan F (2009) Classification of Single-Trial EEG based on support vector clustering during finger movement. Adv neural netw, ISNN 2009, 354–363 Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791 Zander TO, Kothe C (2011) Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng 8(2):025005