An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation

International Journal of Robotics Research - Tập 36 Số 4 - Trang 414-435 - 2017
Bongsu Kim1, Ashish D. Deshpande1
1The University of Texas at Austin USA

Tóm tắt

We present an upper-body exoskeleton for rehabilitation, called Harmony, that provides natural coordinated motions on the shoulder with a wide range of motion, and force and impedance controllability. The exoskeleton consists of an anatomical shoulder mechanism with five active degrees of freedom, and one degree of freedom elbow and wrist mechanisms powered by series elastic actuators. The dynamic model of the exoskeleton is formulated using a recursive Newton–Euler algorithm with spatial dynamics representation. A baseline control algorithm is developed to achieve dynamic transparency and scapulohumeral rhythm assistance, and the coupled stability of the robot–human system at the baseline control is investigated. Experiments were conducted to evaluate the kinematic and dynamic characteristics of the exoskeleton. The results show that the exoskeleton exhibits good kinematic compatibility to the human body with a wide range of motion and performs task-space force and impedance control behaviors reliably.

Từ khóa


Tài liệu tham khảo

10.1109/IEMBS.2004.1403778

10.1109/AIM.2007.4412446

10.1109/ICORR.2007.4428456

10.1016/j.jht.2013.06.001

10.1109/ICAR.2005.1507459

10.1016/j.humov.2009.09.004

Centers for Disease Control and Prevention, 2009, MMWR: Morbidity and Mortality Weekly Report, 58, 421

10.1109/ROBOT.1992.220163

10.1080/00207178808906161

10.3109/09638280903242716

10.1152/jn.1997.78.1.554

10.1016/j.apmr.2007.10.051

10.1109/ICHR.2004.1442127

10.1109/ICRA.2012.6225117

10.1007/978-0-387-74315-8

10.1109/ROBOT.2000.844153

10.1109/IROS.2008.4651012

10.1161/01.cir.0000441139.02102.80

10.1115/1.3140701

10.1109/ROBOT.1989.100210

10.1007/BF00353957

10.1310/33KA-XYE3-QWJB-WGT6

10.1682/JRRD.2005.03.0056

10.1109/ROBOT.1987.1087946

10.1115/DSCC2014-6258

10.1109/ICORR.2015.7281255

10.1016/S1474-4422(13)70305-3

10.1109/BIOROB.2008.4762866

10.1109/TMECH.2008.2004561

10.1109/TMECH.2010.2041243

10.1097/01.wco.0000200544.29915.cc

10.1109/JPROC.2006.880721

10.1109/86.662623

10.1177/1545968307305457

10.1080/00336297.1994.10484130

Levangie PK, 2011, New England Journal of Medicine, 362, 1772

10.1016/j.clinbiomech.2005.02.006

10.1186/1743-0003-10-112

10.1155/2009/962956

10.1109/TMECH.2013.2270435

10.1007/s00221-005-0097-8

Paul RP, 1981, Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators

10.1109/TMECH.2007.901934

10.1682/JRRD.2005.04.0076

10.1109/IROS.1995.525827

10.1109/ICORR.2009.5209482

10.1177/1545968308324226

10.1109/ROBOT.1985.1087267

Sanchez R, 2005, Proceedings IEEE international conference on rehabilitation robotics, 500

10.1109/TNSRE.2006.881565

Schmidt RA, 1988, Motor Control and Learning: A Behavioral Emphasis

Slotine JJE, 1991, Applied Nonlinear Control, 199

10.1016/j.jns.2006.01.005

10.1109/TRO.2009.2019147

10.1109/ICRA.2011.5979863

10.1023/A:1024484615192

10.1109/MRA.2008.927689

10.1109/ICORR.2009.5209502

10.1097/00019052-200112000-00011

10.3233/NRE-2008-23104

10.1161/01.STR.31.10.2390

10.1310/tsr1503-247

10.1177/0278364904042193