Isolation and characterization of a newly chrysene-degrading Achromobacter aegrifaciens

International Microbiology - Trang 1-13 - 2023
Assia Lazzem1, Abdelmalek Lekired2, Hadda-Imene Ouzari2, Ahmed Landoulsi1, Abdelwaheb Chatti1, Alya El May1
1Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
2Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia

Tóm tắt

Polycyclic aromatic hydrocarbons (PAHs) are considered substances of potential human health hazards because of their resistance to biodegradation and carcinogenic index. Chrysene is a PAH with a high molecular weight (HMW) that poses challenges for its elimination from the environment. However, bacterial degradation is an effective, environmentally friendly, and cost-effective solution. In our study, we isolated a potential chrysene-degrading bacteria from crude oil–contaminated seawater (Bizerte, Tunisia). Based on 16SrRNA analysis, the isolate S5 was identified as Achromobacter aegrifaciens. Furthermore, the results revealed that A. aegrifaciens S5 produced a biofilm on polystyrene at 20 °C and 30 °C, as well as at the air-liquid (A-L) interface. Moreover, this isolate was able to swim and produce biosurfactants with an emulsification activity (E24%) over 53%. Chrysene biodegradation by isolate S5 was clearly assessed by an increase in the total viable count. Confirmation was obtained via gas chromatography-mass spectrometry (GC-MS) analyses. A. aegrifaciens S5 could use chrysene as its sole carbon and energy source, exhibiting an 86% degradation of chrysene on day 7. In addition, the bacterial counts reached their highest level, over 25 × 1020 CFU/mL, under the conditions of pH 7.0, a temperature of 30 °C, and a rotary speed of 120 rpm. Based on our findings, A. aegrifaciens S5 can be a potential candidate for bioremediation in HMW-PAH-contaminated environments.

Tài liệu tham khảo

Al Farraj DA, Hadibarata T, Yuniarto A, Syafiuddin A, Surtikanti HK, Elshikh MS, . . . Al-Kufaidy R (2019) Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15. Bioprocess Biosyst Eng 42(6), 963-969. https://doi.org/10.1007/s00449-019-02096-8

Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, . . . Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10(9), 2331-2343. https://doi.org/10.1111/j.1462-2920.2008.01658.x

Barron MG, Vivian DN, Heintz RA, Yim UH (2020) Long-term ecological impacts from oil spills: comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environ Sci Technol 54(11):6456–6467. https://doi.org/10.1021/acs.est.9b05020

Cai YM, Hutchin A, Craddock J, Walsh MA, Webb JS, Tews I (2020) Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Sci Rep 10(1):6232. https://doi.org/10.1038/s41598-020-63008-5

Chandankere R, Yao J, Choi MMF, Masakorala K, Chan Y (2013) An efficient biosurfactant-producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochem Eng J, 74:46–53. https://doi.org/10.1016/j.bej.2013.02.018

Chen X, Shan GB, Shen JM, Zhang F, Liu YD, Cui CZ (2023) In situ bioremediation of petroleum hydrocarbon-contaminated soil: isolation and application of a Rhodococcus strain. Int Microbiol 11. https://doi.org/10.1007/s10123-022-00305-1

Choe HS, Son SW, Choi HA, Kim HJ, Ahn SG, Bang JH, . . . Lee SS (2012) Analysis of the distribution of bacteria within urinary catheter biofilms using four different molecular techniques. Am J Infect Control 40(9), E249-E254. https://doi.org/10.1016/j.ajic.2012.05.010

Chow S, Gu K, Jiang L, Nassour A (2011) Salicylic acid affects swimming, twitching and swarming motility in Pseudomonas aeruginosa, resulting in decreased biofilm formation. J Exp Microbiol Immunol 15:22–29

Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93(6):915–929. https://doi.org/10.1046/j.1365-2672.2002.01774.x

Damar-Celik D, Mataraci-Kara E, Savage PB, Ozbek-Celik B (2021) Antibacterial and antibiofilm activities of ceragenins against Achromobacter species isolated from cystic fibrosis patients. J Chemother 33(4):216–227. https://doi.org/10.1080/1120009x.2020.1819702

Das AJ, Ravinath R, Usha T, Rohith BS, Ekambaram H, Prasannakumar MK, . . . Middha SK (2021) Microbiome analysis of the rhizosphere from wilt infected pomegranate reveals complex adaptations in fusarium-a preliminary study. Agric-Basel 11(9), 831. https://doi.org/10.3390/agriculture11090831

Datta P, Tiwari P, Pandey LM (2018) Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Bioresour Technol 270:439–448. https://doi.org/10.1016/j.biortech.2018.09.047

De Jesus RA, Barros GP, Bharagava RN, Liu J, Mulla SI, Azevedo LCB, Ferreira LFR (2022) Occurrence of pesticides in wastewater: bioremediation approach for environmental safety and its toxicity. Adv Chem Pollut Environ Manag Protect 9:17–33. https://doi.org/10.1016/bs.apmp.2022.10.002

Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97(23):9909–9921. https://doi.org/10.1007/s00253-013-5216-z

Ghafoor A, Hay ID, Rehm BHA (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77(15):5238–5246. https://doi.org/10.1128/aem.00637-11

Ghosal D, Ghosh S, Dutta T K, & Ahn Y (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Frontiers in Microbiology. 7. Article 1369. https://doi.org/10.3389/fmicb.2016.01369

Gildebrant AV, Sazykin IS, Sazykina MA (2022) Formation of biofilms by natural microbial strains in the presence of naphtalene and anthracene. Appl Biochem Microbiol 58(9):1036–1042. https://doi.org/10.1134/s0003683822090137

Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75(4):815–826. https://doi.org/10.1111/j.1365-2958.2009.06793.x

Gouthami K, Mallikarjunaswamy MM, Bhargava RN, Romanholo Ferreira LF, Rahdar A, Saratale GD, Bankole PO, Mulla SI (2023) Microbial biodegradation and biotransformation of petroleum hydrocarbons:229–247. https://doi.org/10.1002/9781119852131.ch13

Hentati D, Chebbi A, Hadrich F, Frikha I, Rabanal F, Sayadi S, . . . Chamkha M (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol Environ Saf 167, 441-449. https://doi.org/10.1016/j.ecoenv.2018.10.036

Hou N, Zhang NN, Jia TT, Sun Y, Dai YF, Wang QQ, . . . Li CY (2018) Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp LH-1 and the study on its metabolisms and fermentation kinetics. Ecotoxicol Environ Saf 163, 205-214. https://doi.org/10.1016/j.ecoenv.2018.07.064

Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL (2020) Achromobacter infections and treatment options. Antimicrob Agents Chemother 64(11):e01025-20. https://doi.org/10.1128/aac.01025-20

Kariyawasam T, Prenzler PD, Howitt JA, Doran GS (2023) Eucalyptus saponin- and sophorolipid-mediated desorption of polycyclic aromatic hydrocarbons from contaminated soil and sediment. Environ Sci Pollut Res 30(8):21638–21653. https://doi.org/10.1007/s11356-022-23562-z

Khademi SMH, Gabrielaite M, Paulsson M, Knulst M, Touriki E, Marvig RL, Pahlman LI (2021) Genomic and phenotypic evolution of Achromobacter xylosoxidans during chronic airway infections of patients with cystic fibrosis. Msystems 6(3):e00523-21. https://doi.org/10.1128/mSystems.00523-21

Kim M, Jung JH, Ha SY, An JG, Shim WJ, Yim UH (2017) Long-term monitoring of PAH contamination in sediment and recovery after the Hebei Spirit oil spill. Arch Environ Contamin Toxicol 73(1):93–102. https://doi.org/10.1007/s00244-017-0365-1

Kim MJ, Bancroft E, Lehnkering E, Donlan RM, Mascola L (2008) Alcaligenes xylosoxidans bloodstream infections in outpatient oncology office. Emerg Infect Dis 14(7):1046–1052. https://doi.org/10.3201/eid1407.070894

Konstantinovic N, Cirkovic I, Dukic S, Maric V, Bozic DD (2017) Biofilm formation of Achromobacter xylosoxidans on contact lens. Acta Microbiol Immunol Hung 64(3):293–300. https://doi.org/10.1556/030.64.2017.005

Kreutzberger MAB, Sobe RC, Sauder AB, Chatterjee S, Pena A, Wang FB et al (2022) Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments. Nat Commun 13(1):1422. https://doi.org/10.1038/s41467-022-29069-y

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

Mansouri A, Abbes C, Ben Mouhoub R, Ben Hassine S, Landoulsi A (2019) Enhancement of mixture pollutant biodegradation efficiency using a bacterial consortium under static magnetic field. Plos One 14(1):e0208431. https://doi.org/10.1371/journal.pone.0208431

Masvingwe NP, Jamal-Ally SF (2019) Determination of bacterial intracellular and extracellular biotransformation compounds and biodegradation of kerosene based industrial rolling oils via gas chromatography-mass spectrometry. Bioremediat J 23(3):154–174. https://doi.org/10.1080/10889868.2019.1642846

Mohamed MSM, Asair AA, Fetyan NAH, Elnagdy SM (2023) Complete biodegradation of diclofenac by new bacterial strains: postulated pathways and degrading enzymes. Microorganisms 11(6):1445. https://doi.org/10.3390/microorganisms11061445

Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T (2019) Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci Total Environ 696:133971. https://doi.org/10.1016/j.scitotenv.2019.133971

Nayak AS, Sanganal SK, Mudde SK, Oblesha A, Karegoudar TB (2011) A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp PNK-04. Fems Microbiol Lett 320(2):128–134. https://doi.org/10.1111/j.1574-6968.2011.02301.x

Nielsen SM, Norskoy-Lauritsen N, Bjarnsholt T, Meyer RL (2016) Achromobacter species isolated from cystic fibrosis patients reveal distinctly different biofilm morphotypes. Microorganisms 4(3):33. https://doi.org/10.3390/microorganisms4030033

Nielsen SM, Penstoft LN, Norskov-Lauritsen N (2019) Motility, biofilm formation and antimicrobial efflux of sessile and planktonic cells of Achromobacter xylosoxidans. Pathogens 8(1):14. https://doi.org/10.3390/pathogens8010014

Nzila A, Ramirez CO, Musa MM, Sankara S, Basheer C, Li QX (2018) Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeterior Biodegrad 130:40–47. https://doi.org/10.1016/j.ibiod.2018.03.014

Olbrecht M, Echahidi F, Pierard D, Peeters C, Vandamme P, Wybo I, Demuyser T (2023) In vitro susceptibility of Achromobacter species isolated from cystic fibrosis patients: a 6-year survey. Antimicrob Agents Chemother 67(7). https://doi.org/10.1128/aac.00379-23

O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304. https://doi.org/10.1046/j.1365-2958.1998.01062.x

Pal S, Chatterjee N, Das A K, McClements D J, & Dhar P (2023). Sophorolipids: A comprehensive review on properties and applications. Advances in Colloid and Interface Science, 313, Article 102856. https://doi.org/10.1016/j.cis.2023.102856

Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813. https://doi.org/10.3389/fmicb.2020.562813

Pinel I, Biskauskaite R, Pal'ova E, Vrouwenvelder H, van Loosdrecht M (2021) Assessment of the impact of temperature on biofilm composition with a laboratory heat exchanger module. Microorganisms 9(6):1185. https://doi.org/10.3390/microorganisms9061185

Premnath N, Mohanrasu K, Rao RGR, Dinesh GH, Prakash GS, Ananthi V, . . . Arun A (2021) A crucial review on polycyclic aromatic hydrocarbons - environmental occurrence and strategies for microbial degradation. Chemosphere 280: 130608. https://doi.org/10.1016/j.chemosphere.2021.130608

Qin YX, Angelini LL, Chai YR (2022) Bacillus subtilis cell differentiation, biofilm formation and environmental prevalence. Microorganisms 10(6):1108. https://doi.org/10.3390/microorganisms10061108

Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci United States Am 97(9):4885–4890. https://doi.org/10.1073/pnas.060030097

Reddy GS, Siddiqui N, Sahitya P, Ayyappa K, Teja T, Akhil KS, . . . Avula VR (2022) Isolation, screening, characterization and application of biosurfactant by Achromobacter xylos strain GSR21 producing bacteria from hydrocarbons contaminated soil. Int J Life Sci Pharma Res 12(1), L154-L169. https://doi.org/10.22376/ijpbs/lpr.2022.12.1.L154-169

Sandri A, Saitta GM, Veschetti L, Boschi F, Mantovani RP, Carelli M, . . . Lleo MM (2023) In vivo inflammation caused by Achromobacter spp. cystic fibrosis clinical isolates exhibiting different pathogenic characteristics. Int J Mol Sci 24(8): 7432. https://doi.org/10.3390/ijms24087432

Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001

Spiers AJ, Bohannon J, Gehrig SM, Rainey PB (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50(1):15–27. https://doi.org/10.1046/j.1365-2958.2003.03670.x

Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/s0167-7012(00)00122-6

Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M (2019) Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: overexpression of amidohydrolase induced by pyrene and BaP. Sci Total Environ 651:813–821. https://doi.org/10.1016/j.scitotenv.2018.09.192

Sviridov AV, Shushkova TV, Epiktetov DO, Tarlachkov SV, Ermakova IT, Leontievsky AA (2021) Biodegradation of organophosphorus pollutants by soil bacteria: biochemical aspects and unsolved problems. Appl Biochem Microbiol 57(7):836–844. https://doi.org/10.1134/s0003683821070085

Syakti AD, Yani M, Hidayati NV, Siregar AS, Doumenq P, Sudiana IMM (2013) The bioremediation potential of hydrocarbonoclastic bacteria isolated from a mangrove contaminated by petroleum hydrocarbons on the Cilacap Coast, Indonesia. Bioremed J 17(1):11–20. https://doi.org/10.1080/10889868.2012.731446

Thomas S, Veettil NT, Subbiah K (2021) Isolation, characterization and optimization of chrysene degradation using bacteria isolated from oil-contaminated water. Water Sci Technol 84(10-11):2737–2748. https://doi.org/10.2166/wst.2021.227

Vaidya S, Devpura N, Jain K, Madamwar D (2018) Degradation of chrysene by enriched bacterial consortium. Front Microbiol 9:1333. https://doi.org/10.3389/fmicb.2018.01333

Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG (2007) Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 75(8):3780–3790. https://doi.org/10.1128/iai.00201-07

Veschetti L, Sandri A, Patuzzo C, Melotti P, Malerba G, Lleo MM (2021) Genomic characterization of Achromobacter species isolates from chronic and occasional lung infection in cystic fibrosis patients. Microb Genom 7(7):000606. https://doi.org/10.1099/mgen.0.000606

Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554. https://doi.org/10.3390/molecules14072535

Wang WP, Wang L, Shao ZZ (2018) Polycyclic aromatic hydrocarbon (PAH) degradation pathways of the obligate marine PAH degrader Cycloclasticus sp strain P1. Appl Environ Microbiol 84(21):e01261-18. https://doi.org/10.1128/aem.01261-18

Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, . . . Juliana H (2023) Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environ Sci Pollut Res https://doi.org/10.1007/s11356-023-25192-5

Wen LY, Huang YQ, Wang WW, Zhang LG, Xu JJ, Li Z, . . . Tang HZ (2022) A novel Diaphorobacter sp. strain isolated from saponification wastewater shows highly efficient phenanthrene degradation. Environ Res 214 114047. https://doi.org/10.1016/j.envres.2022.114047

Yahia NB, Ben Ghorbal SK, Maalej L, Chatti A, Elmay A, Chihib NE, Landoulsi A (2018) Effect of temperature and gamma radiation on Salmonella Hadar biofilm production on different food contact surfaces. J Food Qual:9141540. https://doi.org/10.1155/2018/9141540

Zambianchi M, Durso M, Liscio A, Treossi E, Bettini C, Capobianco ML, . . . Melucci M (2017) Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water. Chem Eng J 326, 130-140. https://doi.org/10.1016/j.cej.2017.05.143