Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria
Tài liệu tham khảo
Balaban, 2011, Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni, PLoS Pathog., 7, e1002420, 10.1371/journal.ppat.1002420
Baraquet, 2012, The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP, Nucleic Acids Res., 40, 7207, 10.1093/nar/gks384
Bennett, 2007, An experimental test of evolutionary trade-offs during temperature adaptation, Proc. Natl. Acad. Sci. USA, 104, 8649, 10.1073/pnas.0702117104
Blount, 2008, Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli, Proc. Natl. Acad. Sci. USA, 105, 7899, 10.1073/pnas.0803151105
Boles, 2005, Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms, Mol. Microbiol., 57, 1210, 10.1111/j.1365-2958.2005.04743.x
Boyle, 2013, Exploiting social evolution in biofilms, Curr. Opin. Microbiol., 16, 207, 10.1016/j.mib.2013.01.003
Breidenstein, 2012, The Lon protease is essential for full virulence in Pseudomonas aeruginosa, PLoS One, 7, e49123, 10.1371/journal.pone.0049123
Caiazza, 2005, Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa, J. Bacteriol., 187, 7351, 10.1128/JB.187.21.7351-7361.2005
Caiazza, 2007, Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14, J. Bacteriol., 189, 3603, 10.1128/JB.01685-06
Cattoir, 2013, Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus, MBio, 3, e00410
Chou, 2012, Optimization of gene expression through divergent mutational paths, Cell Rep., 1, 133, 10.1016/j.celrep.2011.12.003
Chou, 2011, Diminishing returns epistasis among beneficial mutations decelerates adaptation, Science, 332, 1190, 10.1126/science.1203799
Christin, 2010, Causes and evolutionary significance of genetic convergence, Trends Genet., 26, 400, 10.1016/j.tig.2010.06.005
Costerton, 1999, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318
Dasgupta, 2001, Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa, J. Bacteriol., 183, 6636, 10.1128/JB.183.22.6636-6644.2001
Dasgupta, 2000, fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa, J. Bacteriol., 182, 357, 10.1128/JB.182.2.357-364.2000
Dasgupta, 2003, A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa, Mol. Microbiol., 50, 809, 10.1046/j.1365-2958.2003.03740.x
David, 2011, Rapid evolutionary innovation during an Archaean genetic expansion, Nature, 469, 93, 10.1038/nature09649
Deziel, 1996, Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons, Appl. Environ. Microbiol., 62, 1908, 10.1128/AEM.62.6.1908-1912.1996
Déziel, 2003, rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids, Microbiology, 149, 2005, 10.1099/mic.0.26154-0
Dietrich, 2006, The co-evolution of life and Earth, Curr. Biol., 16, R395, 10.1016/j.cub.2006.05.017
Ensminger, 2012, Experimental evolution of Legionella pneumophila in mouse macrophages leads to strains with altered determinants of environmental survival, PLoS Pathog., 8, e1002731, 10.1371/journal.ppat.1002731
Herring, 2006, Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale, Nat. Genet., 38, 1406, 10.1038/ng1906
Heydorn, 2000, Quantification of biofilm structures by the novel computer program COMSTAT, Microbiology, 146, 2395, 10.1099/00221287-146-10-2395
Hibbing, 2010, Bacterial competition: surviving and thriving in the microbial jungle, Nat. Rev. Microbiol., 8, 15, 10.1038/nrmicro2259
Jensen, 2007, Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa, Microbiology, 153, 1329, 10.1099/mic.0.2006/003863-0
Kasting, 2002, Life and the evolution of Earth’s atmosphere, Science, 296, 1066, 10.1126/science.1071184
Kazmierczak, 2013, Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria, Mol. Microbiol., 88, 655, 10.1111/mmi.12221
Kearns, 2010, A field guide to bacterial swarming motility, Nat. Rev. Microbiol., 8, 634, 10.1038/nrmicro2405
Köhler, 2000, Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili, J. Bacteriol., 182, 5990, 10.1128/JB.182.21.5990-5996.2000
Kolter, 2006, Microbial sciences: the superficial life of microbes, Nature, 441, 300, 10.1038/441300a
Kuchma, 2007, BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14, J. Bacteriol., 189, 8165, 10.1128/JB.00586-07
Kuchma, 2010, Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors, J. Bacteriol., 192, 2950, 10.1128/JB.01642-09
Kusumoto, 2006, Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus, J. Biochem., 139, 113, 10.1093/jb/mvj010
Lai, 2009, Swarming motility: a multicellular behaviour conferring antimicrobial resistance, Environ. Microbiol., 11, 126, 10.1111/j.1462-2920.2008.01747.x
Lambertsen, 2004, Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins, Environ. Microbiol., 6, 726, 10.1111/j.1462-2920.2004.00605.x
Lanzer, 1988, Promoters largely determine the efficiency of repressor action, Proc. Natl. Acad. Sci. USA, 85, 8973, 10.1073/pnas.85.23.8973
Lee, 2007, A cyclic-di-GMP receptor required for bacterial exopolysaccharide production, Mol. Microbiol., 65, 1474, 10.1111/j.1365-2958.2007.05879.x
Lenski, 1993, Evolutionary response of Escherichia coli to thermal stress, Am. Nat., 142, S47, 10.1086/285522
Lenski, 1991, Long-term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2,000 generations, Am. Nat., 138, 1315, 10.1086/285289
Lequette, 2005, Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms, J. Bacteriol., 187, 37, 10.1128/JB.187.1.37-44.2005
Lieberman, 2011, Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes, Nat. Genet., 43, 1275, 10.1038/ng.997
Maynard, 2010, A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy, PLoS Genet., 6, e1001017, 10.1371/journal.pgen.1001017
McKenna, 2010, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res., 20, 1297, 10.1101/gr.107524.110
Mitri, 2011, Social evolution in multispecies biofilms, Proc. Natl. Acad. Sci. USA, 108, 10839, 10.1073/pnas.1100292108
Morris, 2011, Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production, Appl. Environ. Microbiol., 77, 8310, 10.1128/AEM.06644-11
Murray, 2006, FlhF is required for swimming and swarming in Pseudomonas aeruginosa, J. Bacteriol., 188, 6995, 10.1128/JB.00790-06
Murray, 2010, Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates, J. Med. Microbiol., 59, 511, 10.1099/jmm.0.017715-0
Nadell, 2011, A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms, Proc. Natl. Acad. Sci. USA, 108, 14181, 10.1073/pnas.1111147108
Nadell, 2010, Emergence of spatial structure in cell groups and the evolution of cooperation, PLoS Comput. Biol., 6, e1000716, 10.1371/journal.pcbi.1000716
Oliver, 2000, High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection, Science, 288, 1251, 10.1126/science.288.5469.1251
O’Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x
Pandza, 2000, The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida, Mol. Microbiol., 36, 414, 10.1046/j.1365-2958.2000.01859.x
Perfeito, 2007, Adaptive mutations in bacteria: high rate and small effects, Science, 317, 813, 10.1126/science.1142284
Rashid, 2000, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA, 97, 4885, 10.1073/pnas.060030097
Schniederberend, 2013, The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa, J. Bacteriol., 195, 1051, 10.1128/JB.02013-12
Shanks, 2006, Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria, Appl. Environ. Microbiol., 72, 5027, 10.1128/AEM.00682-06
Shoval, 2012, Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space, Science, 336, 1157, 10.1126/science.1217405
Shrout, 2006, The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional, Mol. Microbiol., 62, 1264, 10.1111/j.1365-2958.2006.05421.x
Smidt, 2004, Anaerobic microbial dehalogenation, Annu. Rev. Microbiol., 58, 43, 10.1146/annurev.micro.58.030603.123600
Smith, 2006, Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients, Proc. Natl. Acad. Sci. USA, 103, 8487, 10.1073/pnas.0602138103
Snitkin, 2012, Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing, Sci. Transl. Med., 4, 10.1126/scitranslmed.3004129
Takahashi, 2008, Swarming of Pseudomonas aeruginosa PAO1 without differentiation into elongated hyperflagellates on hard agar minimal medium, FEMS Microbiol. Lett., 280, 169, 10.1111/j.1574-6968.2007.01057.x
Taubes, 2008, The bacteria fight back, Science, 321, 356, 10.1126/science.321.5887.356
Taylor, 2011, Selection experiments reveal trade-offs between swimming and twitching motilities in Pseudomonas aeruginosa, Evolution, 65, 3060, 10.1111/j.1558-5646.2011.01376.x
Tenaillon, 2012, The molecular diversity of adaptive convergence, Science, 335, 457, 10.1126/science.1212986
Tremblay, 2008, Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays, J. Basic Microbiol., 48, 509, 10.1002/jobm.200800030
Tremblay, 2010, Gene expression in Pseudomonas aeruginosa swarming motility, BMC Genomics, 11, 587, 10.1186/1471-2164-11-587
Tremblay, 2007, Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour, Environ. Microbiol., 9, 2622, 10.1111/j.1462-2920.2007.01396.x
van Ditmarsch, 2011, High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization, BMC Microbiol., 11, 140, 10.1186/1471-2180-11-140
Weigand, 2012, General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra, Proc. Natl. Acad. Sci. USA, 109, 13680, 10.1073/pnas.1205357109
Winsor, 2011, Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes, Nucleic Acids Res., 39, D596, 10.1093/nar/gkq869
Woods, 2006, Tests of parallel molecular evolution in a long-term experiment with Escherichia coli, Proc. Natl. Acad. Sci. USA, 103, 9107, 10.1073/pnas.0602917103
Wyckoff, 2002, Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility, Microbiology, 148, 3423, 10.1099/00221287-148-11-3423
Xavier, 2007, Cooperation and conflict in microbial biofilms, Proc. Natl. Acad. Sci. USA, 104, 876, 10.1073/pnas.0607651104
Xavier, 2009, Social evolution of spatial patterns in bacterial biofilms: when conflict drives disorder, Am. Nat., 174, 1, 10.1086/599297
Xavier, 2011, A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa, Mol. Microbiol., 79, 166, 10.1111/j.1365-2958.2010.07436.x
Xie, 2011, Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates, Proc. Natl. Acad. Sci. USA, 108, 5915, 10.1073/pnas.1018383108
Yang, 2011, Evolutionary dynamics of bacteria in a human host environment, Proc. Natl. Acad. Sci. USA, 108, 7481, 10.1073/pnas.1018249108
Yeung, 2009, Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR, J. Bacteriol., 191, 5592, 10.1128/JB.00157-09
Yeung, 2011, The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa, J. Bacteriol., 193, 918, 10.1128/JB.00911-10
Yeung, 2012, Mucin promotes rapid surface motility in Pseudomonas aeruginosa, MBio, 3, 10.1128/mBio.00073-12
Zhen, 2012, Parallel molecular evolution in an herbivore community, Science, 337, 1634, 10.1126/science.1226630