Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures

Elsevier BV - Tập 284 - Trang 115-120 - 2019
Avani Bharatkumar Patel1, Shilpi Singh1, Aaishwarya Patel2, Kunal Jain1, Seema Amin2, Datta Madamwar1
1Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
2P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa, 388 421 Anand, Gujarat, India

Tài liệu tham khảo

Abdel-Shafy, 2016, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt. J. Pet., 25, 107, 10.1016/j.ejpe.2015.03.011 Bacosa, 2015, Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan, J. Hazard. Mater., 283, 689, 10.1016/j.jhazmat.2014.09.068 Basha, 2007, Heavy metal content of suspended particulate matter at world’s largest ship-breaking yard, Alang-Sosiya, India, Water Air Soil Pollut., 178, 373, 10.1007/s11270-006-9205-z Boldrin, 1993, Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp, Appl. Environ. Microbiol., 59, 1927, 10.1128/AEM.59.6.1927-1930.1993 Chen, 2013, Azoarcusolearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil, Int. J. Syst. Evol. Microbiol., 63, 3755, 10.1099/ijs.0.050609-0 Chen, 1999, Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15, Environ. Sci. Technol., 33, 435, 10.1021/es9805730 Desai, 2007, Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments, Bioresour. Technol., 98, 761, 10.1016/j.biortech.2006.04.004 Dong, 2010, Oceanibaculum pacificum sp. nov., isolated from hydrothermal field sediment of the south-west Pacific Ocean, Int. J. Syst. Evol. Microbiol., 60, 219, 10.1099/ijs.0.011932-0 Dudhagara, 2016, Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India, Environ. Pollut., 213, 338, 10.1016/j.envpol.2016.02.030 Fu, 2012, Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil, Environ. Sci. Pollut. Res., 19, 1605, 10.1007/s11356-011-0672-4 Gao, 2013, Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6, Int. Biodeterior. Biodegrad., 79, 98, 10.1016/j.ibiod.2013.01.012 Godoy-Lozano, 2018, Bacterial diversity and the geochemical landscape in the southwestern Gulf of Mexico, Front. Microbiol., 9 Gosai, 2018, Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline, Environ. Geochem. Health, 40, 653, 10.1007/s10653-017-0011-x Jones, 2014, Association of growth substrates and bacterial genera with benzo [a] pyrene mineralization in contaminated soil, Environ. Eng. Sci., 31, 689, 10.1089/ees.2014.0275 Kim, 2007, Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology, J. Bacteriol., 189, 464, 10.1128/JB.01310-06 Kim, 2005, Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1, Appl. Microbiol. Biotechnol., 67, 275, 10.1007/s00253-004-1796-y Kumari, 2018, Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria, Bioresour. Technol., 254, 174, 10.1016/j.biortech.2018.01.075 Lai, 2009, Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean, Int. J. Syst. Evol. Microbiol., 59, 1733, 10.1099/ijs.0.004341-0 Ma, 2013, Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge, Bioresour. Technol., 140, 15, 10.1016/j.biortech.2013.03.184 Mikesková, 2012, Interspecific interactions in mixed microbial cultures in a biodegradation perspective, Appl. Microbiol. Biotechnol., 95, 861, 10.1007/s00253-012-4234-6 Moscoso, 2012, Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale, Bioresour. Technol., 119, 270, 10.1016/j.biortech.2012.05.095 Mrozik, 2010, Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds, Microbiol. Res., 165, 363, 10.1016/j.micres.2009.08.001 Muckian, 2009, Bacterial community dynamics during bioremediation of phenanthrene-and fluoranthene-amended soil, Int. Biodeterior. Biodegrad., 63, 52, 10.1016/j.ibiod.2008.04.005 Murínová, 2014, Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane, Int. J. Microbiol., 10.1155/2014/873081 Okere, 2012, Biodegradation of PAHs in ‘pristine’soils from different climatic regions, J. Bioremed. Biodegrad. S, 1 Pandey, 2002, Bacterial chemotaxis toward environmental pollutants: role in bioremediation, Appl. Environ. Microbiol., 68, 5789, 10.1128/AEM.68.12.5789-5795.2002 Patel, 2018, Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs), Bioresour. Technol., 253, 288, 10.1016/j.biortech.2018.01.049 Patel, 2012, Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat India, J. Hazard. Mater., 201, 43, 10.1016/j.jhazmat.2011.11.002 Patel, 2013, Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard, Mar. Pollut. Bull., 74, 199, 10.1016/j.marpolbul.2013.07.001 Pelaez, 2013, Design and field-scale implementation of an “on site” bioremediation treatment in PAH-polluted soil, Environ. Pollut., 181, 190, 10.1016/j.envpol.2013.06.004 Qiao, 2006, Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu LakeChina, Environ. Int., 32, 28, 10.1016/j.envint.2005.04.005 Radwan, 2017, Calcium (II)-and dipicolinic acid mediated-biostimulation of oil-bioremediation under multiple stresses by heat, oil and heavy metals, Sci. Rep., 7, 9534, 10.1038/s41598-017-10121-7 Reddy, 2005, Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay India, Chemosphere, 61, 1587, 10.1016/j.chemosphere.2005.04.093 Roy, 2014, Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study, Int. Biodeterior. Biodegrad., 94, 79, 10.1016/j.ibiod.2014.03.024 Seo, 2009, Bacterial degradation of aromatic compounds, Int. J. Environ. Res. Public Health, 6, 278, 10.3390/ijerph6010278 Singh, 2017, Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines, Biocatal. Agric. Biotechnol., 10, 20, 10.1016/j.bcab.2017.02.001 Somnath, 2007, A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2, 3-dioxo-5-(29-hydroxyphenyl)-pent-4-enoic acid, Microbiology, 153, 2104, 10.1099/mic.0.2006/004218-0 Tay, 2015, Degradation of polycyclic aromatic hydrocarbons (pyrene and fluoranthene) by bacterial consortium isolated from contaminated road side soil and soil termite fungal comb, Environ. Earth Sci., 74, 5383, 10.1007/s12665-015-4552-y Thorsen, 2004, Bioavailability of PAHs: Effects of soot carbon and PAH source, Environ. Sci. Technol., 38, 2029, 10.1021/es0306056 Vaidya, 2018, Degradation of chrysene by enriched bacterial consortium, Front. Microbiol., 9, 1333, 10.3389/fmicb.2018.01333 Vandermeer, 2007, Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor, Biodegradation, 18, 211, 10.1007/s10532-006-9056-8 Vila, 2010, Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization, FEMS Microbiol. Ecol., 73, 349 Wanapaisan, 2018, Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium, J. Hazard. Mater., 342, 561, 10.1016/j.jhazmat.2017.08.062 Yu, 2005, Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments, Environ. Int., 31, 149, 10.1016/j.envint.2004.09.008 Zhong, 2011, Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp, Bioresour. Technol., 102, 2965, 10.1016/j.biortech.2010.09.113