Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440
Tài liệu tham khảo
Balzer, 2002, The stringent response genes relA and spoT are important for Escherichia coil biofilms under slow-growth conditions, Can. J. Microbiol., 48, 675, 10.1139/w02-060
Battesti, 2006, Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism, Mol. Microbiol., 62, 1048, 10.1111/j.1365-2958.2006.05442.x
Bougdour, 2007, ppGpp regulation of RpoS degradation via anti-adaptor protein IraP, Proc. Natl. Acad. Sci. U. S. A., 104, 12896, 10.1073/pnas.0705561104
Chavez de Paz, 2012, Role of (p)ppGpp in biofilm formation by Enterococcus faecalis, Appl. Environ. Microbiol., 78, 1627, 10.1128/AEM.07036-11
Dalebroux, 2012, ppGpp: magic beyond RNA polymerase, Nat. Rev. Microbiol., 10, 203, 10.1038/nrmicro2720
Dasgupta, 2002, fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein, J. Bacteriol., 184, 5240, 10.1128/JB.184.19.5240-5250.2002
Dean, 2015, Burkholderia diffusible signal factor signals to francisella novicida to disperse biofilm and increase siderophore production, Appl. Environ. Microbiol., 81, 7057, 10.1128/AEM.02165-15
Durfee, 2008, Transcription profiling of the stringent response in Escherichia coli, J. Bacteriol., 190, 1084, 10.1128/JB.01092-07
Fernandez-Pinar, 2011, PpoR, an orphan LuxR-family protein of Pseudomonas putida KT2440, modulates competitive fitness and surface motility independently of N-acylhomoserine lactones, Environ. Microbiol. Rep., 3, 79, 10.1111/j.1758-2229.2010.00190.x
Flemming, 2010, The biofilm matrix, Nat. Rev. Microbiol., 8, 623, 10.1038/nrmicro2415
Gentry, 1993, Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp, J. Bacteriol., 175, 7982, 10.1128/jb.175.24.7982-7989.1993
Ghafoor, 2011, Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture, Appl. Environ. Microbiol., 77, 5238, 10.1128/AEM.00637-11
Gjermansen, 2010, Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms, Mol. Microbiol., 75, 815, 10.1111/j.1365-2958.2009.06793.x
Griffith, 2002, Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays, Biochem. Biophys. Res. Commun., 290, 397, 10.1006/bbrc.2001.6152
Hall, 2017, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria, FEMS Microbiol. Rev., 41, 276, 10.1093/femsre/fux010
Haugen, 2008, Advances in bacterial promoter recognition and its control by factors that do not bind DNA, Nat. Rev. Microbiol., 6, 507, 10.1038/nrmicro1912
He, 2012, Stringent response regulation of biofilm formation in Vibrio cholerae, J. Bacteriol., 194, 2962, 10.1128/JB.00014-12
Hernandez, 1991, Escherichia coli ppGpp synthetase II activity requires spoT, J. Biol. Chem., 266, 5991, 10.1016/S0021-9258(19)67695-7
Hinsa, 2003, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Mol. Microbiol., 49, 905, 10.1046/j.1365-2958.2003.03615.x
Irie, 2012, Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 109, 20632, 10.1073/pnas.1217993109
Jimenez-Fernandez, 2015, The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida, Environ. Microbiol. Rep., 7, 78, 10.1111/1758-2229.12153
Jishage, 2002, Regulation of sigma factor competition by the alarmone ppGpp, Genes Dev., 16, 1260, 10.1101/gad.227902
Justesen, 1986, The physiology of stringent factor (ATP:GTP 3'-diphosphotransferase) in Escherichia coli, Biochimie, 68, 715, 10.1016/S0300-9084(86)80165-1
Kalia, 2013, Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis, Chem. Soc. Rev., 42, 305, 10.1039/C2CS35206K
Keith, 1999, AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae, J. Bacteriol., 181, 7176, 10.1128/JB.181.23.7176-7184.1999
Khakimova, 2013, The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance, J. Bacteriol., 195, 2011, 10.1128/JB.02061-12
Kovach, 1995, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene, 166, 175, 10.1016/0378-1119(95)00584-1
Lange, 1994, The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability, Genes Dev., 8, 1600, 10.1101/gad.8.13.1600
Lange, 1995, Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli, J. Bacteriol., 177, 4676, 10.1128/jb.177.16.4676-4680.1995
Li, 2010, Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment, Environ. Microbiol., 12, 1578
Li, 2015, Role of (p)ppGpp in viability and biofilm formation of Actinobacillus pleuropneumoniae S8, PLoS One, 10, e0141501, 10.1371/journal.pone.0141501
Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method, Methods, 25, 402, 10.1006/meth.2001.1262
Maisonneuve, 2013, (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity, Cell, 154, 1140, 10.1016/j.cell.2013.07.048
Martinez-Gil, 2010, LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture, Mol. Microbiol., 77, 549, 10.1111/j.1365-2958.2010.07249.x
Martinez-Gil, 2014, Roles of cyclic Di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF, J. Bacteriol., 196, 1484, 10.1128/JB.01287-13
Matilla, 2011, Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes, Environ. Microbiol., 13, 1745, 10.1111/j.1462-2920.2011.02499.x
Moor, 2014, Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF, Microbiology, 160, 2681, 10.1099/mic.0.082503-0
Nakazawa, 2002, Travels of a Pseudomonas, from Japan around the world, Environ. Microbiol., 4, 782, 10.1046/j.1462-2920.2002.00310.x
Nelson, 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ. Microbiol., 4, 799, 10.1046/j.1462-2920.2002.00366.x
Newell, 2011, A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage, PLoS Biol., 9, e1000587, 10.1371/journal.pbio.1000587
Nielsen, 2011, Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions, Environ. Microbiol., 13, 1342, 10.1111/j.1462-2920.2011.02432.x
Nilsson, 2011, Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability, Environ. Microbiol., 13, 1357, 10.1111/j.1462-2920.2011.02447.x
O’Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x
O’Toole, 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49, 10.1146/annurev.micro.54.1.49
Potrykus, 2008, (p)ppGpp: still magical?, Annu. Rev. Microbiol., 62, 35, 10.1146/annurev.micro.62.081307.162903
Ramsey, 2005, Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis, Mol. Microbiol., 56, 309, 10.1111/j.1365-2958.2005.04552.x
Sarubbi, 1988, Basal ppGpp level adjustment shown by new spoT mutants affect steady state growth rates and rrnA ribosomal promoter regulation in Escherichia coli, Mol. Gen. Genet., 213, 214, 10.1007/BF00339584
Stoodley, 2002, Biofilms as complex differentiated communities, Annu. Rev. Microbiol., 56, 187, 10.1146/annurev.micro.56.012302.160705
Sugisaki, 2013, Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis, Microbiology, 159, 1379, 10.1099/mic.0.066597-0
Sutrina, 2015, Biofilm growth of Escherichia coli is subject to cAMP-dependent and cAMP-independent inhibition, J. Mol. Microbiol. Biotechnol., 25, 209
Sze, 2002, Integration of global regulation of two aromatic-responsive 54-dependent systems: a common phenotype by different mechanisms, J. Bacteriol., 184, 760, 10.1128/JB.184.3.760-770.2002
Teitzel, 2003, Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa, Appl. Environ. Microbiol., 69, 2313, 10.1128/AEM.69.4.2313-2320.2003
van Delden, 2001, Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa, J. Bacteriol., 183, 5376, 10.1128/JB.183.18.5376-5384.2001
Webb, 2003, Cell death in Pseudomonas aeruginosa biofilm development, J. Bacteriol., 185, 4585, 10.1128/JB.185.15.4585-4592.2003
Weber, 2006, Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli, Mol. Microbiol., 62, 1014, 10.1111/j.1365-2958.2006.05440.x
Wendrich, 2002, Dissection of the mechanism for the stringent factor RelA, Mol. Cell., 10, 779, 10.1016/S1097-2765(02)00656-1
Xiao, 1991, Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations, J. Biol. Chem., 266, 5980, 10.1016/S0021-9258(19)67694-5
Xiao, 2016, C-di-GMP regulates the expression of lapA and bcs operons via FleQ in Pseudomonas putida KT2440, Environ. Microbiol. Rep., 8, 659, 10.1111/1758-2229.12419
Xie, 1996, Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA, J. Bacteriol., 178, 4990, 10.1128/jb.178.16.4990-4996.1996
Yousef-Coronado, 2008, Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida, FEMS Microbiol. Lett., 288, 118, 10.1111/j.1574-6968.2008.01339.x
Zhang, 2013, ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp strain PCC 7120, J. Bacteriol., 195, 4536, 10.1128/JB.00724-13