Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons
Tóm tắt
Polycyclic aromatic hydrocarbon (PAHs)-degrading bacteria may enhance the bioavailability of PAHs by excreting biosurfactants, by production of extracellular polymeric substances, or by forming biofilms. We tested these hypotheses in pure cultures of PAHs-degrading bacterial strains. Most of the strains did not substantially reduce the surface tension when grown on PAHs in liquid shaken cultures. Thus, pseudo-solubilization of PAHs in biosurfactant micelles seems not to be a general strategy for these isolates to enhance PAHs-bioavailability. Three semi-colloid Sphingomonas polysaccharides all increased the solubility of PAHs (Gellan 1.3- to 5.4-fold, Welan 1.8- to 6.0-fold and Rhamsan 2.4- to 9.0-fold). The increases were most pronounced for the more hydrophobic PAHs. The polysaccharide-sorbed PAHs were bioavailable. Mineralization rates of 9-[14C]-phenanthrene and 3-[14C]-fluoranthene by Sphingobium EPA505, were similar with and without sphingans, indicating that mass-transfer rates from PAHs crystals to the bulk liquid were unaffected by the polysaccharides. Biofilm formation on PAHs crystals may favor the diffusive mass transfer of PAHs from crystals to the bacterial cells. A majority of the PAHs-degraders tested formed biofilms in microtiter wells coated with PAHs crystals. For strains capable of growing on different PAHs; the more soluble the PAHs, the lower the percentage of cells attached. Biofilm formation on PAHs-sources was the predominant mechanism among the tested bacteria to overcome mass transfer limitations when growing on poorly soluble PAHs.
Tài liệu tham khảo
Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier Alasan. Appl Environ Microbiol 65:2697–2702
Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAHs)-degrading bacteria using PAHs-sorbing carriers. Appl Environ Microbiol 66:1834–1843
Bosma TNP, Middeldorp PJM, Schraa G, Zender AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252
Chandrasekaran R, Radha A (1995) Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends Food Sci Technol 6:143–148
Cooper DG, Zaijic JE (1980) Surface active compounds from microorganisms. Appl Microbiol 26:229–253
Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64
Déziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912
Dohse DM, Lion LW (1994) Effect of microbial polymers on the sorption and transport of phenanthrene in a low-carbon sand. Environ Sci Technol 28:541–548
Goodfellow M (1992) In: Balows A, Trüper HG, Dworkin M, Harder W, Sleifer KH (eds) The family Nocardiaceae. The prokaryotes, 2nd edn. Springer, New York Berlin Heidelberg, pp 1188–1213
Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152
Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol 18:97–105
Ho Y, Jackson M, Yang Y, Mueller JG, Pritchard PH (2000) Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAHs-contaminated soils and sediments and comparison of several Sphingomonas spp. J Ind Microbiol Biotechnol 2:100–112
Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol 6:243–248
Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of a Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235
Johnsen AR, Hausner M, Schnell A, Wuertz S (2000) Evaluation of fluorescently labelled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl Environ Microbiol 66:3487–3491
Johnsen AR, Bendixen K, Karlson U (2002a) Detection of microbial growth on PAHs in microtiter plates using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689
Johnsen AR, Winding A, Karlson U, Roslev P (2002b). Linking of micro-organisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell-lipids. Appl Environ Microbiol 68:6106–6113
Johnsen K, Andersen S, Jacobsen CS (1996) Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudononas biovars. Appl Environ Microbiol 62:3818–3825
Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic hydrocarbons (PAHs). Appl Microbiol Biotechnol 41:267–273
Kästner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAHs-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362
Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zaehringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110
Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell-envelope structure of the lipopolysaccharide-lacking Gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176:284–290
Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806
Mueller JG, Chapman PJ, Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl Environ Microbiol 55:3085–3090
Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086
Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAHs-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343
Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166
Oberbremer A, Müller-Hurtig R (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor. Appl Microbiol Biotechnol 31:582–586
Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1955
Ron EZ, Rosenberg E (2001) Natural role of biosurfactants. Environ Microbiol 3:229–236
Späth R, Wuertz S (1998) Sorption properties of biofilms. Water Sci Technol 37:207–210
Stelmark PL, Gray MR, Picard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168
Takeuchi M, Hamana K Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and the three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomi analyses. Int J Syst Evol Microbiol 51:1405–1417
Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 Rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078
Van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloid Surf B 5:91–110
Volkering F, Breure AM, Sterkenburg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: Effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552
Volkering F, Breure AM, van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705
Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417
Wick LY, Colangelo T, Harms H (2001) Kinetics of mass-transfer limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361
Wick LY, Ruiz de Munain A, Springael D, Harms H (2002) Responses of Mycobacterium sp. 501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385
Willumsen PA, Arvin E (1999) Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis. Environ Sci Technol 33:2571–2578
Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAHs-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423
Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl Microbiol Biotechnol 50:475–483
Willumsen PA, Karlson U, Stakebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Intl J Syst Evol Microbiol 51:1715–1722
Wolfaardt GM (1995) Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol 61:152–158
Wolfaardt GM, Lawrence JR (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223
Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27:279–291
Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713
Zhang Y, Maier WJ, Miller RM (1997) Effects of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217