![thumbnail](/images/default_publisher_thumbnail.png)
Journal of Leukocyte Biology
SCIE-ISI SCOPUS (1984-2023)
0741-5400
1938-3673
Mỹ
Cơ quản chủ quản: OXFORD UNIV PRESS , John Wiley & Sons Inc.
Các bài báo tiêu biểu
Động vật đa bào phát hiện các tác nhân gây bệnh thông qua một loạt các thụ thể nhận biết các mẫu phân tử liên kết với tác nhân gây bệnh (PAMPs). Tuy nhiên, tác nhân gây bệnh không phải là tác nhân duy nhất gây ra tổn thương mô và tế bào: chấn thương cũng là một yếu tố. Bằng chứng đang gia tăng cho thấy chấn thương và tổn thương mô liên quan được nhận biết ở cấp độ tế bào thông qua việc phát hiện các protein trong tế bào được phóng thích bởi các tế bào chết thông qua các thụ thể. Thuật ngữ “alarmin” được đề xuất để phân loại những phân tử nội sinh này báo hiệu tổn thương mô và tế bào. Thú vị thay, các tế bào tác động của miễn dịch bẩm sinh và miễn dịch thích ứng có thể tiết ra alarmins thông qua các con đường không cổ điển và thường làm như vậy khi chúng được kích hoạt bởi PAMPs hoặc các alarmins khác. Do đó, alarmins nội sinh và PAMPs bên ngoài truyền tải một thông điệp tương tự và tạo ra các phản ứng tương tự; chúng có thể được coi là các nhóm con của một tập hợp lớn hơn, các mẫu phân tử liên quan đến tổn thương (DAMPs).
CD40 is a cell surface receptor that belongs to the tumor necrosis factor-R (TNF-R) family, and that was first identified and functionally characterized on B lymphocytes. Its critical role in T cell-dependent humoral immune responses was demonstrated by patients with the hyper-IgM syndrome, as well as by gene targeting in mice. However, in recent years it has become clear that CD40 is expressed much more broadly, including expression on monocytes, dendritic cells, endothelial cells, and epithelial cells. In addition, the CD40-ligand (CD40-L/CD154), a member of the TNF family, is also expressed more widely than activated CD4+ T cells only. Therefore it is now thought that CD40-CD40-L interactions play a more general role in immune regulation. Collectively these studies have culminated in pre-clinical and clinical studies that are in progress. This article reviews recent developments in this field of research, with main emphasis on (1) structure and expression of CD40 and its ligand; (2) CD40 signal transduction; (3) in vitro function of CD40 on different cell types; and (4) in vivo functions of CD40/CD40-L interactions. J. Leukoc. Biol. 67: 2–17; 2000.
The anti-granulocyte receptor-1 (Gr-1) mAb, RB6-8C5, has been used extensively to deplete neutrophils in mice and to investigate the role of these cells in host defense. RB6-8C5 binds to Ly6G, which is present on neutrophils, and to Ly6C, which is expressed on neutrophils, dendritic cells, and subpopulations of lymphocytes and monocytes. It is thus likely that in vivo administration of RB6-8C5 may deplete not only neutrophils but also other Gr-l+ (Ly6C+) cells. This study describes the use of an Ly6G-specific mAb, 1A8, as an alternative means to deplete neutrophils. In vivo administration of RB6-8C5 reduced blood neutrophils and Gr-1+ monocytes, whereas administration of 1A8 reduced blood neutrophils but not Gr-1+ monocytes. Plasma TNF-α in endotoxemia was increased 20-fold by RB6-8C5 pretreatment and fourfold by 1A8 pretreatment. In a wound model, pretreatment with either antibody decreased wound neutrophils and macrophages. TNF-α staining in brefeldin-treated wound leukocytes was increased by pretreatment with RB6-8C5, but not 1A8. Neutrophil depletion with 1A8 offers advantages over the use of RB6-8C5, as it preserves non-neutrophil Gr-1+ cells depleted by the anti-Gr-1 antibody. The loss of non-neutrophil Gr-1+ populations in RB6-8C5-treated animals is associated with increased TNF-α responses, suggesting these cells may function to suppress TNF-α production.
Hydroethidine (HE) and 2′,7′-dichlorofluorescin (DCFH) were used for the flow cytometric measurement of reactive oxygen metabolites in leukocytes. Hydroethidine and DCFH were both rapidly oxidized in a cell-free cuvette assay to ethidium bromide (EB) and 2′,7′-dichlorofluorescein (DCF) by H2O2 and peroxidase, but not by H2O2 alone, while only HE was oxidized by KO2, a source of O-2. Quiescent lymphocytes, monocytes, and neutrophils spontaneously oxidized HE to EB, while DCFH was only oxidized to a low degree. Neutrophils increased 6.9-fold in EB red fluorescence and 12.5-fold in DCF green fluorescence during the respiratory burst induced by phorbol 12-myristate 13-acetate or 6.1-fold and 4.7-fold, respectively, during the respiratory burst induced by Escherichia coll bacteria. The HE or DCFH oxidation during the respiratory burst, unlike the spontaneous HE oxidation, was not inhibitable by 10 mM NaN. indicating a non-mitochondrial source of cellular oxidants during the respiratory burst such as NADPH oxidase, which produces O-2. The oxidation of DCFH, but not of HE, was decreased in stimulated neutrophils, which were simultaneously loaded with HE and DCFH. Intracellular DCFH oxidation induced by incubation of resting neutrophils with extracellular H2O2 was not influenced by the presence of HE. This indicates that HE is oxidized at an earlier step in the reactive oxygen metabolism of neutrophils than DCFH, i.e., by early oxygen metabolites like O2-, while DCFH is oxidized in part by H2O2 and phagosomal peroxidases. The differential oxidation of HE and DCFH during simultaneous cellular staining permits the analysis of up to three functionally different neutrophil populations in septic patients. This is of interest for the determination of disease-related alterations of oxygen metabolism in quiescent and stimulated leukocytes.
The effect of alterations in extracellular pH on cellular and humoral immune function is reviewed. Because acidic pH predominates at inflammatory loci and other sites of immune activity, most studies to date focus on the effect of acidic rather than alkaline pH. Investigations on polymorphonuclear leukocytes demonstrate mainly inhibition of chemotaxis, respiratory activity, and bactericidal capacity at reduced pH. Evidence of impaired lymphocyte cytotoxicity and proliferation at acidic pH is also beginning to emerge. Many of the clinical acidoses are accompanied similarly by immunodeficiency. Studies on macrophages and eosinophils are few and inconclusive. A small number of studies demonstrate acid-induced activation of complement proteins and the alternative complement pathway, plus increased antibody-binding to leukocytes at lowered pH. A differential effect of acidic pH on humoral and cellular immunity may, therefore, exist. Increasing recognition of the significance of extracellular pH in relation to immune function warrants further studies in this presently incomplete but rewarding field.
Mig and IP-10 are related members of the CXC subfamily of the chemokine family of cytokines. The murine Mig (MuMig), human IP-10, and the mouse homologue of IP-10, Crg-2, were all identified due to the dramatic inductions of their genes in monocytic cells treated with interferon-γ (IFN-γ). Studies using recombinant (r) human proteins show that, unlike most other CXC chemokines, rHuMig and rIP-10 have no activity on neutrophils but appear to target lymphocytes specifically. rHuMig and rIP-10 are active as chemotactic factors for stimulated, but not for resting, T cells. Studies done in vitro and in vivo have shown that rHuMig and rIP-10 share additional activities, including inhibition of neovascularization, inhibition of hematopoietic progenitor cells, and anti-tumor effects. rHuMig and rIP-10 show reciprocal desensitization on activated T cells and have been demonstrated to share a receptor, CXCR3. The genes for both MuMig and Crg-2 are highly expressed in multiple tissues during experimental viral and protozoan infections in mice, but their patterns of expression differ. This suggests that the Migs and IP-10/Crg-2 may play roles in host defense and that, despite their similar activities assayed in vitro, Mig and IP-10/Crg-2 may serve non-redundant functions in vivo.
Neutrophil apoptosis leads to macrophage ingestion of intact senescent neutrophils. This may represent a neutrophil removal mechanism that is important both in the control of inflammatory tissue injury and for the normal resolution processes of inflammation. Because apoptosis is likely to be a key control process in cell and tissue homeostasis, a number of inflammatory mediators were tested for their ability to modulate the rate of apoptosis in populations of neutrophils aging in culture. Endotoxic lipopolysaccharide, human recombinant complement factor 5a, and human recombinant granulocyte- macrophage colony-stimulating factor all markedly inhibited the rate of neutrophil apoptosis in a concentration-dependent fashion, without inducing necrosis (as assessed by trypan blue exclusion). This inhibitory effect on the rate of neutrophil apoptosis was shown by morphological criteria and confirmed by gel electrophoresis of extracted DNA. Inhibition of apoptosis of aging neutrophil populations was associated with prolongation of the functional life span of the population as assessed by the ability of neutrophils to spread on glass surfaces, to polarize in response to deliberate stimulation with N-formyl-Met-Leu-Phe (fMLP), and to release the granule enzyme marker myeloperoxidase on fMLP stimulation. These observations show that inflammatory mediators prolong the functional life span of neutrophils through modulation of apoptosis. Further elucidation of these mechanisms will lead to a better understanding of the processes controlling neutrophil residence and function in inflamed tissues and may provide further insights into the molecular mechanisms of apoptosis, which is of widespread importance in tissue biology.
One of the objectives of studying endothelial cells in vitro is to evaluate neutrophil-endothelial cell interactions including potential consequences of oxidant-mediated damage to the endothelial cell. Current under-standing of endothelial cell oxidative function is derived primarily from the measurement of extracellular products. We utilized 2 dyes, 2′,7′-dichlorofluorescin diacetate (DGFH-DA) and hydroethidine (HE), which measure hydrogen peroxide (H2O2) and superoxide anion (O2-) respectively, for their suitability to monitor oxidative mechanisms in endothelial cells and to provide a reliable measure of intracellular oxidants. Endothelial cells stained with DCFH-DA and stimulated with H2O2 exhibited an increase in the fluorescent product 2′,7′-dichlorofluorescein (DCF) (measure of intracellular H2O2) which peaked at 10 min. Endothelial cells stained with HE and stimulated with H2O2 exhibited an increase in the fluorescent product ethidium bromide (EB) (measure of intracellular O2-) which lasted for approximately 60 min. Superoxide dismutase increased DCF fluorescence in endothelial cells stimulated with H2O2 by 158%. Allopurinol (xanthine oxidase inhibitor) reduced DCF and EB fluorescence by 48% and 37% respectively in endothelial cells stimulated with H2O2. Catalase completely inhibited an increase in DCF or EB fluorescence in endothelial cells stimulated with H2O2. There was a direct correlation between mean DCF and EB fluorescence intensity and the concentration of H2O2 or the number of phorbol 12-myristate 13-acetate-activated neutrophils added to endothelial cells. We conclude from these studies that DCFH-DA and HE can be used to measure intracellular H2O2 and O2- in endothelial cells and that the xanthine oxidase pathway for intracellular O2- production accounts for approximately 40% of the total intracellular O2- generated in endothelial cells after stimulation with H2O2. The combination of image cytometry and flow cytometry will be important for future evaluations of endothelial cell function. J. Leukoc. Biol. 55: 253–258; 1994.
Freund's adjuvants are irreplaceable components of induction protocols of many experimental animal models of autoimmune disease. Apart from the early studies done in the 1950s and 1960s, no further direct investigation on the mode of action of these adjuvants has been undertaken. It is generally assumed that incomplete (IFA) and complete Freund's adjuvant (CFA) act by prolonging the lifetime of injected autoantigen, by stimulating its effective delivery to the immune system and by providing a complex set of signals to the innate compartment of the immune system, resulting in altered leukocyte proliferation and differentiation. Here, we review evidence collected from various types of studies that provide more insight in the specific alterations of the immune response caused by IFA and CFA. Early events include rapid uptake of adjuvant components by dendritic cells, enhanced phagocytosis, secretion of cytokines by mononuclear phagocytes, and transient activation and proliferation of CD4+ lymphocytes. The mycobacterial components within CFA signal T lymphocytes to assume a Th1 profile so that strong delayed-type hypersensitivity against autoantigens develops. In the absence of mycobacteria, T-lymphocyte differentiation tends to assume a Th2 profile with strong antibody production only. The mycobacterial component also accounts for a morphologic and functional remodeling of the haemopoietic system that develops over a period of several weeks and that is characterized by a drastic expansion of Mac-1+ immature myeloid cells. These cells have been found to be associated with enhanced disease in some models but with reduced disease in others. Thus, in experimental autoimmune diseases, CFA-mediated activation of the innate immune compartment is important not only by regulating the early induction phase but also by providing a surplus of effector and regulator cells in the late phase.