Clinical and Experimental Pharmacology and Physiology
1440-1681
0305-1870
Anh Quốc
Cơ quản chủ quản: Wiley-Blackwell Publishing Ltd , WILEY
Các bài báo tiêu biểu
1. Curcumin là thành phần hoạt tính của gia vị nghệ và đã được tiêu dùng cho mục đích y học từ hàng nghìn năm nay. Khoa học hiện đại đã chỉ ra rằng curcumin điều chỉnh nhiều phân tử tín hiệu khác nhau, bao gồm các phân tử gây viêm, yếu tố phiên mã, enzym, protein kinase, protein reductase, protein mang, protein giúp tế bào sống sót, protein kháng thuốc, phân tử bám dính, yếu tố tăng trưởng, thụ thể, protein điều hòa chu kỳ tế bào, chemokine, DNA, RNA và ion kim loại.
2. Với khả năng của polyphenol này trong việc điều chỉnh nhiều phân tử tín hiệu khác nhau, curcumin đã được báo cáo là có những hoạt động đa diện. Đầu tiên được chứng minh có hoạt động kháng khuẩn vào năm 1949, kể từ đó curcumin đã được chứng minh có tính kháng viêm, chống oxy hóa, kích thích tế bào tự hủy, ngăn ngừa hóa chất, hóa trị liệu, chống tăng trưởng, phục hồi vết thương, giảm đau, chống ký sinh trùng và chống sốt rét. Nghiên cứu trên động vật đã gợi ý rằng curcumin có thể hiệu quả chống lại một loạt bệnh tật ở người, bao gồm tiểu đường, béo phì, các rối loạn thần kinh và tâm thần và ung thư, cũng như các bệnh mạn tính ảnh hưởng đến mắt, phổi, gan, thận và hệ tiêu hóa và tim mạch."
3. Mặc dù đã có nhiều thử nghiệm lâm sàng đánh giá tính an toàn và hiệu quả của curcumin đối với các bệnh tật ở người đã hoàn thành, những thử nghiệm khác vẫn đang tiếp diễn. Hơn nữa, curcumin được sử dụng như một thực phẩm chức năng ở nhiều nước, bao gồm Ấn Độ, Nhật Bản, Mỹ, Thái Lan, Trung Quốc, Hàn Quốc, Thổ Nhĩ Kỳ, Nam Phi, Nepal và Pakistan. Mặc dù giá thành rẻ, có vẻ được dung nạp tốt và có tiềm năng hoạt động, curcumin không được phê duyệt để điều trị bất kỳ bệnh nào ở người."
4. Trong bài báo này, chúng tôi thảo luận về sự phát hiện và các hoạt động sinh học chính của curcumin, với sự nhấn mạnh đặc biệt vào hoạt động của nó ở cấp độ phân tử và tế bào, cũng như ở động vật và con người."
Curcumin is a naturally occurring poly‐phenolic compound with a broad range of favourable biological functions, including anti‐cancer, anti‐oxidant and anti‐inflammatory activities. The low bioavailability and In the present study, we investigated the feasibility and potential of poly(caprolactone) (PCL) nanofibres as a delivery vehicle for curcumin for wound healing applications. By optimizing the electrospinning parameters, bead‐free curcumin‐loaded PCL nanofibres were developed. The fibres showed sustained release of curcumin for 72 h and could be made to deliver a dose much lower than the reported cytotoxic concentration while remaining bioactive. Human foreskin fibroblast cells (HFF‐1) showed more than 70% viability on curcumin‐loaded nanofibres. The anti‐oxidant activity of curcumin‐loaded nanofibres was demonstrated using an oxygen radical absorbance capacity (ORAC) assay and by the ability of the fibres to maintain the viability of HFF‐1 cells under conditions of oxidative stress. The curcumin‐loaded nanofibres also reduced inflammatory induction, as evidenced by low levels of interleukin‐6 release from mouse monocyte–macrophages seeded onto the fibres following stimulation by The These results demonstrate that the curcumin‐loaded PCL nanofibre matrix is bioactive and has potential as a wound dressing with anti‐oxidant and anti‐inflammatory properties.
Chronic hyperglycaemia in diabetes leads to the overproduction of free radicals and evidence is increasing that these contribute to the development of diabetic nephropathy. Among the spices, turmeric ( Diabetes was induced by a single intraperitoneal injection of STZ (65 mg/kg) in rats. Four weeks after STZ injection, rats were divided into four groups, namely control rats, diabetic rats and diabetic rats treated with curcumin (15 and 30 mg/kg, p.o.) for 2 weeks. Renal function was assessed by creatinine, blood urea nitrogen, creatinine and urea clearance and urine albumin excretion. Oxidative stress was measured by renal malonaldehyde, reduced glutathione and the anti‐oxidant enzymes superoxide dismutase and catalase. Streptozotocin‐injected rats showed significant increases in blood glucose, polyuria and a decrease in bodyweight compared with age‐matched control rats. After 6 weeks, diabetic rats also exhibited renal dysfunction, as evidenced by reduced creatinine and urea clearance and proteinuria, along with a marked increase in oxidative stress, as determined by lipid peroxidation and activities of key anti‐oxidant enzymes. Chronic treatment with curcumin significantly attenuated both renal dysfunction and oxidative stress in diabetic rats. These results provide confirmatory evidence of oxidative stress in diabetic nephropathy and point towards the possible anti‐oxidative mechanism being responsible for the nephroprotective action of curcumin.
The aim of the present study was to determine the role of myocardial microvascular endothelial cells (MMVEC) in impaired angiogenesis of type 2 diabetic Goto‐Kakizaki (GK) rats. A microRNA (miRNA) microarray was used to assess miRNA expression in MMVEC from GK and Wistar rats. Upregulation of miRNA‐320 was observed in MMVEC from GK rats using real‐time reverse transcription–polymerase chain reaction (RT‐PCR). So far, nine miRNAs have been reported to target angiogenic factors and/or receptors, including kinase insert domain containing receptor (Flk‐1), insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor 1 receptor (IGF‐1R). The predicted genes targeted by miR‐320 include Flk‐1, IGF‐1 and IGF‐1R. Western blot analysis and RT‐PCR were used to analyse the protein and mRNA expression, respectively, of the putative genes IGF‐1 and IGF‐1R. The expression of IGF‐1 and IGF‐1R proteins decreased significantly in diabetic MMVEC. However, the expression of IGF‐1 mRNA increased rather than decreased. The mRNA expression of IGF‐1R did not differ significantly between diabetic and control MMVEC. Transfection of an miR‐320 inhibitor into MMVEC from GK rats confirmed that miR‐320 impaired angiogenesis. The proliferation and migration of diabetic MMVEC improved after transfection of the miR‐320 inhibitor. In addition, the miR‐320 inhibitor significantly increased the expression of IGF‐1 protein, but had no effect on the expression of IGF‐1R. Eleven miRNAs were upregulated in MMVEC from GK rats compared with those in Wistar rats: The results indicate that upregulation of miR‐320 in MMVEC from GK rats may be responsible for the inconsistency between the expression of IGF‐1 protein and mRNA and therefore related to impaired angiogenesis in diabetes. Transfection of an miR‐320 inhibitor may be a therapeutic approach for the treatment of impaired angiogenesis in diabetes.
1. It is now clear that members of the fibroblast growth factor (FGF) family have multiple roles during the formation of the central nervous system (CNS).
2. There are at least 23 members of the FGF family and, of these, 10 are expressed in the developing CNS, along with four FGF receptors (FGFR‐1–4).
3. The present review discusses the roles of these FGFs, with emphasis on FGF‐2, FGF‐8, FGF‐15 and FGF‐17. Fibroblast growth factors‐2 and ‐15 are generally expressed throughout the developing CNS, whereas FGF‐8 and FGF‐17 are tightly localized to specific regions of the developing brain and are only expressed in the embryo during the early phases of proliferation and neurogenesis.
4. Expression studies on FGFRs in the chick and mouse indicate that FGFR‐1 is most generally expressed, whereas FGFR‐2 and FGFR‐3 show highly localized but changing patterns of expression throughout CNS development. The FGFR‐4 has been localized to the developing CNS in fish but not at a detailed level, as yet, in chick or mouse.
5. A picture is emerging from these studies that particular FGFs signal through specific receptors in a highly localized manner to regulate the development of different regions of the brain.
6. This picture has been demonstrated so far for the developing cortex (FGF‐2–/– mice), the forebrain and midbrain (FGF‐8 hypomorphs) and the cerebellum (FGF‐17/FGF‐8 mutant mice). In addition, generation of mutant animals deleted for FGFR‐1 and FGFR‐2b IIIb demonstrate their importance in FGF signalling.
7. However, there are significant gaps in our knowledge of the localization of members of the FGF family and their receptors. More detailed information on the spatio‐temporal mapping of FGFs and FGFR isoforms is required in order to understand the molecular mechanisms through which FGFs signal.
1. The uridine diphosphate (UDP)‐glucuronosyltransferases (UGT) are a family of enzymes that catalyse the covalent addition of glucuronic acid to a wide range of lipophilic chemicals. They play a major role in the detoxification of many exogenous and endogenous compounds by generating products that are more polar and, thus, more readily excreted in bile or urine.
2. Inherited deficiencies in UGT forms are deleterious, as exemplified by the debilitating effects of hyperbilirubinaemia and neurotoxicity in subjects with mutations in the enzyme that converts bilirubin to its more pola. glucuronide.
3. The UGT protein can be conceptually divided into two domains with the amino‐terminal half of the protein demonstrating greater sequence divergence between isoforms. This region apparently determines aglycone specificity. The aglycone binding site is presumed to be a ‘loose’ fit, as many structurally diverse substrates can be bound by the same UGT isoform. The carboxyl‐terminal half, which is more conserved in sequence between different isoforms, is believed to contain a binding site for the cosubstrate UDP glucuronic acid (UDPGA).
4. Uridine diphosphat. glucuronosyltransfera.se is localized to the endoplasmic reticulum (ER) and spans the membrane with a type I topology. The putative transmembrane domain is located near the carboxyl terminus of the protein such that only a small portion of the protein resides in the cytosol. This cytosolic tail is believed to contain an ER‐targeting signal. The major portion of the protein is located in the ER lumen, including the proposed substrate‐binding domains and the catalytic site.
5. The microsomal membrane impedes the access of UDPGA to the active site, resulting in latency of UGT activity in intact ER‐derived microsomes. Active transport of UDPGA is believed to occur in hepatocytes, but the transport system has not been fully characterized. Uridine diphosphate glucuronosyltransfer‐ase activity is also highly lipid dependent and the enzyme may contain regions of membrane association in addition to the transmembrane domain.
1. Nitroglycerine (NG) was discovered in 1847 by Ascanio Sobrero in Turin, following work with Theophile‐Jules Pelouze. Sobrero first noted the ‘violent headache’ produced by minute quantities of NG on the tongue.
2. Constantin Hering, in 1849, tested NG in healthy volunteers, observing that headache was caused with ‘such precision’. Hering pursued NG (‘glonoine’) as a homeopathic remedy for headache, believing that its use fell within the doctrine of ‘like cures like’.
3. Alfred Nobel joined Pelouze in 1851 and recognized the potential of NG. He began manufacturing NG in Sweden, overcoming handling problems with his patent detonator. Nobel suffered acutely from angina and was later to refuse NG as a treatment.
4. During the mid‐19th century, scientists in Britain took an interest in the newly discovered amyl nitrite, recognized as a powerful vasodilator. Lauder Brunton, the father of modern pharmacology, used the compound to relieve angina in 1867, noting the pharmacological resistance to repeated doses.
5. William Murrell first used NG for angina in 1876, although NG entered the British
6. In the early 20th century, scientists worked on
7. The NG industry flourished from 1900, exposing workers to high levels of organic nitrites; the phenomena of nitrate tolerance was recognized by the onset of ‘Monday disease’ and of nitrate‐withdrawal/overcompensation by ‘Sunday Heart Attacks’.
8. Ferid Murad discovered the release of nitric oxide (NO) from NG and its action on vascular smooth muscle (in 1977). Robert Furchgott and John Zawadski recognized the importance of the endothelium in acetylcholine‐induced vasorelaxation (in 1980) and Louis Ignarro and Salvador Moncada identified endothelial‐derived relaxing factor (EDRF) as NO (in 1987).
9. Glycerol trinitrate remains the treatment of choice for relieving angina; other organic esters and inorganic nitrates are also used, but the rapid action of NG and its established efficacy make it the mainstay of angina pectoris relief.
1. Hypertension is associated with structural alterations of resistance arteries, a process known as remodelling (increased media‐to‐lumen ratio).
2. At the cellular level, vascular remodelling involves changes in vascular smooth muscle cell (VSMC) growth, cell migration, inflammation and fibrosis. These processes are mediated via multiple factors, of which angiotensin (Ang) II appears to be one of the most important in hypertension.
3. Angiotensin II signalling, via AT1 receptors, is upregulated in VSMC from resistance arteries of hypertensive patients and rats. This is associated with hyperactivation of vascular NADPH oxidase, leading to increased generation of reactive oxygen species (ROS), particularly O2– and H2O2.
4. Reactive oxygen species function as important intracellular second messengers to activate many downstream signalling molecules, such as mitogen‐activated protein kinase, protein tyrosine phosphatases, protein tyrosine kinases and transcription factors. Activation of these signalling cascades leads to VSMC growth and migration, modulation of endothelial function, expression of pro‐inflammatory mediators and modification of extracellular matrix.
5. Furthermore, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity.
6. All these processes play major roles in vascular injury associated with hypertension. Accordingly, ROS and the signalling pathways that they modulate provide new targets to regress vascular remodelling, reduce peripheral resistance and prevent hypertensive end‐organ damage.
7. In the present review, we discuss the role of ROS as second messengers in AngII signalling and focus on the implications of these events in the processes underlying vascular remodelling in hypertension.
1. The hypothalamic paraventricular nucleus (PVN) is an important integrative site within the brain composed of magnocellular and parvocellular neurons. It is known to influence sympathetic nerve activity.
2. The parvocellular PVN contains neurons that project to the intermediolateral cell column of the thoraco–lumbar spinal cord (IML). This defines the PVN as an autonomic ‘premotor nucleus’, one of only five present within the brain.
3. Another projection arising from the PVN is a prominent innervation of the pressor region of the rostral ventrolateral medulla (RVLM), also a premotor nucleus. The distribution of the PVN neurons projecting to the RVLM is similar to that of the PVN neurons that project to the IML.
4. It has been found that up to 30% of spinally projecting neurons in the PVN also send collaterals to the RVLM. Thus, there are neurons in the PVN that can: (i) directly influence sympathetic nerve activity (via PVN–IML connections); (ii) indirectly influence sympathetic nerve activity (via PVN–RVLM connections); and (iii) both directly and indirectly influence sympathetic nerve activity (via neurons with collaterals to the IML and RVLM).
5. In the rat, results of studies using the protein Fos to identify activated neurons in the brain suggest that neurons in the PVN with projections to the IML or RVLM may be activated by decreases in blood volume.
6. In conclusion, the PVN can influence sympathetic nerve activity. Within the PVN are neurons with anatomical connections that enable them to affect sympathetic nerve activity either directly, indirectly or via both mechanisms (via collaterals). Studies that have examined the role of specific subgroups within the PVN suggest that PVN neurons with connections to the IML or to the RVLM may play a role in the reflex changes in sympathetic nerve activity that are involved in blood volume regulation.