Annual Review of Plant Biology

  1545-2123

  1543-5008

  Mỹ

Cơ quản chủ quản:  ANNUAL REVIEWS , Annual Reviews Inc.

Lĩnh vực:
Molecular BiologyCell BiologyPhysiologyPlant Science

Phân tích ảnh hưởng

Thông tin về tạp chí

 

The Annual Review of Plant Biology, in publication since 1950, covers the significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms.

Các bài báo tiêu biểu

THE GENETICS AND BIOCHEMISTRY OF FLORAL PIGMENTS
Tập 57 Số 1 - Trang 761-780 - 2006
Erich Grotewold
Three major groups of pigments, the betalains, the carotenoids, and the anthocyanins, are responsible for the attractive natural display of flower colors. Because of the broad distribution of anthocyanins (synthesized as part of the flavonoid pathway) among the flowering plants, their biosynthesis and regulation are best understood. However, over the past few years, significant progress has been made in understanding the synthesis and participation of carotenoids (derived from isoprenoids) and betalains (derived from tyrosine) in flower pigmentation. These three families of pigments play important ecological functions, for example in the attraction of pollinating animals. Anthocyanins in particular have also been the target of numerous biotechnological efforts with the objective of creating new, or altering the properties of existing, coloring compounds. The focus of this review is to examine the biosynthesis, regulation, and contribution to flower coloration of these three groups of pigments.
Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling
Tập 60 Số 1 - Trang 455-484 - 2009
Christine H. Foyer, Arnold J. Bloom, Guillaume Queval, Graham Noctor
Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C3 plants. Because most higher plant species photosynthesize using only the C3 pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO2 or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H2O2 in photosynthetic cells. Through H2O2 production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.
REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction
Tập 55 Số 1 - Trang 373-399 - 2004
Klaus Apel, Heribert Hirt
▪ Abstract  Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
MOSSES AS MODEL SYSTEMS FOR THE STUDY OF METABOLISM AND DEVELOPMENT
Tập 57 Số 1 - Trang 497-520 - 2006
David J. Cove, Magdalena Bezanilla, Phillip Harries, Ralph S. Quatrano
The haploid gametophyte stage of the moss life cycle is amenable to genetic and biochemical studies. Many species can be cultured on simple defined media, where growth is rapid, making them ideal material for metabolic studies. Developmental responses to hormones and to environmental inputs can be studied both at the level of individual cells and in multicellular tissues. The protonemal stage of gametophyte development comprises cell filaments that extend by the serial division of their apical cells, allowing the investigation of the generation and modification of cell polarity and the role of the cytoskeleton in these processes. Molecular techniques including gene inactivation by targeted gene replacement or by RNA interference, together with the nearly completed sequencing of the Physcomitrella patens genome, open the way for detailed study of the functions of genes involved in both development and metabolism.
Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants
Tập 71 Số 1 - Trang 741-765 - 2020
Gane Ka‐Shu Wong, Pamela S. Soltis, Jim Leebens‐Mack, Norman J. Wickett, Michael S. Barker, Yves Van de Peer, Sean W. Graham, Michael Melkonian
The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case the Viridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.
A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors
Tập 60 Số 1 - Trang 379-406 - 2009
Thomas Boller, Georg Felix
Microbe-associated molecular patterns (MAMPs) are molecular signatures typical of whole classes of microbes, and their recognition plays a key role in innate immunity. Endogenous elicitors are similarly recognized as damage-associated molecular patterns (DAMPs). This review focuses on the diversity of MAMPs/DAMPs and on progress to identify the corresponding pattern recognition receptors (PRRs) in plants. The two best-characterized MAMP/PRR pairs, flagellin/FLS2 and EF-Tu/EFR, are discussed in detail and put into a phylogenetic perspective. Both FLS2 and EFR are leucine-rich repeat receptor kinases (LRR-RKs). Upon treatment with flagellin, FLS2 forms a heteromeric complex with BAK1, an LRR-RK that also acts as coreceptor for the brassinolide receptor BRI1. The importance of MAMP/PRR signaling for plant immunity is highlighted by the finding that plant pathogens use effectors to inhibit PRR complexes or downstream signaling events. Current evidence indicates that MAMPs, DAMPs, and effectors are all perceived as danger signals and induce a stereotypic defense response.
Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops
Tập 65 Số 1 - Trang 95-123 - 2014
Damar López‐Arredondo, Marco Antonio Leyva‐González, Sandra Isabel González-Morales, José López‐Bucio, Luís Herrera‐Estrella
Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate—the only form of phosphorus that can be assimilated by plants—are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20–30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.
Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi
Tập 64 Số 1 - Trang 501-529 - 2013
J Novotná, Miroslava Opekarová, Guido Großmann, Widmar Tanner
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
T<scp>HE</scp> L<scp>IPOXYGENASE</scp> P<scp>ATHWAY</scp>
Tập 53 Số 1 - Trang 275-297 - 2002
Ivo Feußner, Claus Wasternack
▪ Abstract  Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Control of <i>Arabidopsis</i> Root Development
Tập 63 Số 1 - Trang 563-590 - 2012
Jalean J. Petricka, Cara M. Winter, Philip N. Benfey
The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.