REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction

Annual Review of Plant Biology - Tập 55 Số 1 - Trang 373-399 - 2004
Klaus Apel1, Heribert Hirt2
1Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH) Universitätstr. 2, 8092 Zürich, Switzerland,
2Max F. Perutz Laboratories, University of Vienna, Gregor-Mendel-Institute of Molecular Plant Sciences, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria;

Tóm tắt

▪ Abstract  Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

Từ khóa


Tài liệu tham khảo

10.1105/tpc.9.9.1559

10.1104/pp.107.4.1049

10.1034/j.1399-3054.1997.1000203.x

10.1016/S0092-8674(00)81405-1

10.1104/pp.90.1.109

Asada K, 1987, Photoinhibition, 227

10.1146/annurev.arplant.50.1.601

10.1182/blood.V93.5.1464

10.1146/annurev.py.33.090195.001503

10.1016/S0005-2728(98)00079-6

10.1073/pnas.79.14.4352

10.1007/BF02035149

10.1093/jexbot/53.372.1367

10.1104/pp.116.4.1379

10.1016/S1369-5266(99)80051-X

10.1016/0092-8674(92)90530-P

Bray EA, 2000, Biochemistry and Molecular Biology of Plants, 1158

10.1146/annurev.bi.58.070189.000455

10.1091/mbc.12.2.323

10.1073/pnas.95.10.5818

10.1091/mbc.E02-08-0499

10.1046/j.1432-1327.1999.00199.x

10.1073/pnas.93.18.9970

10.1105/tpc.11.7.1277

10.1146/annurev.pharmtox.39.1.67

10.1038/35081161

10.1038/nature00861

10.1093/emboj/19.19.5157

10.1016/S0092-8674(02)01048-6

10.1073/pnas.231178298

10.1104/pp.127.1.159

10.1016/0014-5793(96)00177-9

10.1016/S0891-5849(00)00157-X

10.1042/bj3300115

10.1016/0048-4059(85)90044-X

Elstner EF, 1991, Active Oxygen/Oxidative Stress in Plant Metabolis, 13

10.1104/pp.116.4.1209

Foyer CH, 1994, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plant, 1

10.1046/j.1469-8137.2000.00667.x

10.1016/S0031-9422(98)00004-1

10.1007/s004250000376

10.1093/jexbot/53.372.1249

10.1104/pp.009886

10.1091/mbc.11.12.4241

10.1016/S0092-8674(02)01165-0

10.1016/S1011-1344(01)00207-X

10.1104/pp.110.3.759

10.1104/pp.124.1.21

10.1093/emboj/19.21.5793

10.1104/pp.103.020792

Gustin MC, 1998, Microbiol. Mol. Biol. Rev., 62, 1264, 10.1128/MMBR.62.4.1264-1300.1998

Halliwell B, 1989, Free Radicals in Biology and Medicine, 2

Hammond-Kosack K, 2000, Biochemistry and Molecular Biology of Plants, 1102

10.1093/pcp/pcf145

10.1021/bi972890+

10.1105/tpc.10.7.1095

10.1104/pp.005504

10.1016/S0981-9428(01)01300-6

10.1126/science.273.5283.1853

10.1016/S1369-5266(02)00285-6

10.1104/pp.126.3.1055

10.1016/S0955-0674(97)80068-3

10.1126/science.284.5414.654

10.1073/pnas.96.19.10922

10.1105/tpc.10.2.255

10.1073/pnas.97.16.8849

10.1515/BC.2002.047

10.1073/pnas.97.6.2940

10.1104/pp.121.1.147

10.1023/A:1010601424452

10.1016/0092-8674(94)90544-4

10.1034/j.1399-3054.1996.960326.x

10.1073/pnas.021465298

10.1016/0005-2728(93)90201-P

10.1016/0168-9452(90)90114-4

10.1042/bj2600231

10.1046/j.1365-313X.2002.01216.x

10.1073/pnas.96.14.8271

10.1104/pp.111.4.1031

10.1016/0003-9861(51)90012-4

10.1016/S0014-5793(01)03106-4

10.1007/s00425-001-0675-3

10.1016/S0960-9822(99)80341-8

10.1073/pnas.96.24.14165

10.1074/jbc.274.7.4231

10.1073/pnas.252641899

10.1104/pp.009688

10.1016/S0092-8674(03)00429-X

10.1016/S1369-5266(01)00226-6

10.1105/tpc.13.11.2513

10.1105/tpc.007906

10.1016/S1369-5266(02)00282-0

10.1098/rstb.2000.0714

10.1093/jexbot/53.372.1283

10.1093/oxfordjournals.pcp.a029096

10.1105/tpc.014662

10.1105/tpc.13.1.179

10.1073/pnas.96.11.6553

10.1016/S1369-5266(02)00259-5

10.1038/35021067

10.1042/0264-6021:3590575

10.1023/A:1013027920444

10.1105/tpc.6.1.65

10.1034/j.1399-3054.1997.1000119.x

10.1091/mbc.01-06-0288

10.1080/07352688809382256

10.1046/j.1365-313X.2002.01427.x

10.1038/nbt1097-988

10.1104/pp.126.3.1281

10.1104/pp.125.4.1591

10.1046/j.1365-313x.2001.01187.x

10.1016/S0891-5849(00)00432-9

10.1105/tpc.11.3.431

Steinbeck MJ, 1992, J. Biol. Chem., 267, 13425, 10.1016/S0021-9258(18)42228-4

10.1046/j.1365-313X.2002.01474.x

10.1002/j.1460-2075.1995.tb00310.x

10.1073/pnas.92.10.4158

10.1104/pp.010999

10.1073/pnas.012452499

10.1046/j.1365-313X.1998.00136.x

10.1105/tpc.11.7.1195

10.1093/oxfordjournals.pcp.a029572

10.1038/nature01681

10.1104/pp.123.4.1289

10.1104/pp.99.3.1208

Vernoux T, 2002, Oxidative Stress in Plants, 297

10.1007/BF00771012

10.1073/pnas.152337999

10.1016/0014-5793(95)00688-6

Whistler CA, 1998, J. Bacteriol., 180, 6635, 10.1128/JB.180.24.6635-6641.1998

10.1093/emboj/16.16.4806

10.1046/j.1365-3040.2002.00859.x

10.1104/pp.126.4.1438

10.1126/science.279.5357.1718