American Journal of Physiology - Renal Physiology
SCIE-ISI SCOPUS (1992-2023)
1931-857X
1522-1466
Mỹ
Cơ quản chủ quản: AMER PHYSIOLOGICAL SOC , American Physiological Society
Các bài báo tiêu biểu
The Na-K-ATPase is characterized by a complex molecular heterogeneity that results from the expression and differential association of multiple isoforms of both its α- and β-subunits. At present, as many as four different α-polypeptides (α1, α2, α3, and α4) and three distinct β-isoforms (β1, β2, and β3) have been identified in mammalian cells. The stringent constraints on the structure of the Na pump isozymes during evolution and their tissue-specific and developmental pattern of expression suggests that the different Na-K-ATPases have evolved distinct properties to respond to cellular requirements. This review focuses on the functional properties, regulation, and possible physiological relevance of the Na pump isozymes. The coexistence of multiple α- and β-isoforms in most cells has hindered the understanding of the roles of the individual polypeptides. The use of heterologous expression systems has helped circumvent this problem. The kinetic characteristics of different Na-K-ATPase isozymes to the activating cations (Na+and K+), the substrate ATP, and the inhibitors Ca2+and ouabain demonstrate that each isoform has distinct properties. In addition, intracellular messengers differentially regulate the activity of the individual Na-K-ATPase isozymes. Thus the regulation of specific Na pump isozymes gives cells the ability to precisely coordinate Na-K-ATPase activity to their physiological requirements.
Differential solute clearances were used to characterize glomerular function in 12 nondiabetic subjects with severe obesity (body mass index >38). Nine healthy subjects served as the control group. In the obese group, glomerular filtration rate (GFR) and renal plasma flow (RPF) exceeded the control value by 51 and 31%, respectively. Consequently, filtration fraction increased. The augmented RPF suggested a state of renal vasodilatation involving, mainly or solely, the afferent arteriole. Albumin excretion rate and fractional albumin clearance increased by 89 and 78%, respectively. Oral glucose tolerance tests were suggestive of insulin resistance. Insulin resistance was positively correlated with GFR ( r = 0.88, P < 0.001) and RPF ( r = 0.72, P < 0.001). Mean arterial pressure was higher than in the control group. Fractional clearances of dextrans of broad size distribution tended to be lowered. The determinants of the GFR were estimated qualitatively by using a theoretical model of dextran transport through a heteroporous membrane. This analysis suggests that the high GFR in very obese subjects may be the result of an increase in transcapillary hydraulic pressure difference (ΔP). An abnormal transmission of increased arterial pressure to the glomerular capillaries through a dilated afferent arteriole could account for the augmentation in ΔP.
In humans, the kidneys filter ∼180 g of d-glucose from plasma each day, and this is normally reabsorbed in the proximal tubules. Although the mechanism of reabsorption is well understood, Na+-glucose cotransport across the brush-border membrane and facilitated diffusion across the basolateral membrane, questions remain about the identity of the genes responsible for cotransport across the brush border. Genetic studies suggest that two different genes regulate Na+-glucose cotransport, and there is evidence from animal studies to suggest that the major bulk of sugar is reabsorbed in the convoluted proximal tubule by a low-affinity, high-capacity transporter and that the remainder is absorbed in the straight proximal tubule by a high-affinity, low-capacity transporter. There are at least three different candidates for these human renal Na+-glucose cotransporters. This review will focus on the structure-function relationships of these three transporters, SGLT1, SGLT2, and SGLT3.
Recently published epidemiological and outcome analysis studies have brought to our attention the important role played by acute kidney injury (AKI) in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). AKI accelerates progression in patients with CKD; conversely, CKD predisposes patients to AKI. This research gives credence to older, well-thought-out wisdom that recovery from AKI is often not complete and is marked by residual structural damage. It also mirrors older experimental observations showing that unilateral nephrectomy, a surrogate for loss of nephrons by disease, compromises structural recovery and worsens tubulointerstitial fibrosis after ischemic AKI. Moreover, review of a substantial body of work on the relationships among reduced renal mass, hypertension, and pathology associated with these conditions suggests that impaired myogenic autoregulation of blood flow in the setting of hypertension, the arteriolosclerosis that results, and associated recurrent ischemic AKI in microscopic foci play important roles in the development of progressively increasing tubulointerstitial fibrosis. How nutrition, an additional factor that profoundly affects renal disease progression, influences these events needs reevaluation in light of information on the effects of calories vs. protein and animal vs. vegetable protein on injury and progression. Considerations based on published and emerging data suggest that a pathology that develops in regenerating tubules after AKI characterized by failure of differentiation and persistently high signaling activity is the proximate cause that drives downstream events in the interstitium: inflammation, capillary rarefaction, and fibroblast proliferation. In light of this information, we advance a comprehensive hypothesis regarding the pathophysiology of AKI as it relates to the progression of kidney disease. We discuss the implications of this pathophysiology for developing efficient therapeutic strategies to delay progression and avert ESRD.
Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the endothelial glycocalyx and epithelial slit diaphragm to the overall hydraulic resistance and macromolecule selectivity and the nanostructural basis for the observed permeability properties of the GBM.
In humans and experimental models of renal ischemia, tubular cells in various nephron segments undergo necrotic and/or apoptotic cell death. Various factors, including nucleotide depletion, electrolyte imbalance, reactive oxygen species, endonucleases, disruption of mitochondrial integrity, and activation of various components of the apoptotic machinery, have been implicated in renal cell vulnerability. Several approaches to limit the injury and augment the regeneration process, including nucleotide repletion, administration of growth factors, reactive oxygen species scavengers, and inhibition of inducers and executioners of cell death, proved to be effective in animal models. Nevertheless, an effective approach to limit or prevent ischemic renal injury in humans remains elusive, primarily because of an incomplete understanding of the mechanisms of cellular injury. Elucidation of cell death pathways in animal models in the setting of renal injury and extrapolation of the findings to humans will aid in the design of potential therapeutic strategies. This review evaluates our understanding of the molecular signaling events in apoptotic and necrotic cell death and the contribution of various molecular components of these pathways to renal injury.
Tight junctions (TJ) regulate paracellular ionic charge selectivity and conductance across epithelial tissues and cell lines. These properties vary among epithelia, and recent evidence implicates the claudins, a family of TJ transmembrane proteins, as important determinants of both characteristics. To test the hypothesis that each claudin contributes a characteristic charge discrimination to the TJ, we expressed claudins-2, -4, -11, and -15 in both cation-selective Madin-Darby canine kidney (MDCK) II cells and in anion-selective LLC-PK1cells and examined changes in transepithelial electrical resistance (TER) and paracellular charge selectivity. Regulated expression and localization were verified by immunoblot analysis and immunofluorescence microscopy, respectively. Expression of claudin-4 increased TER in both cell lines, whereas effects of the others on TER were variable. Claudin-4 and -11 decreased paracellular permeability for Na+in MDCK II cells, whereas neither claudin-2 nor -15 had an effect. Conversely, in LLC-PK1cells, claudin-2 and -15 increased the permeability for Na+, whereas claudin-4 and -11 were without effect. We conclude that the contribution of each claudin is most easily detectable when it reverses the direction of monolayer charge selectivity. These results are consistent with a model in which exogenous claudins add new charge-selective pores, leading to a physiological phenotype that combines endogenous and exogenous contributions. Additionally, it is possible to rationalize the direction of charge selectivity conferred by the individual claudins on the basis of electrostatic effects of the charged amino acids in their first extracellular loops.
FXYD proteins belong to a family of small-membrane proteins. Recent experimental evidence suggests that at least five of the seven members of this family, FXYD1 (phospholemman), FXYD2 (γ-subunit of Na-K-ATPase), FXYD3 (Mat-8), FXYD4 (CHIF), and FXYD7, are auxiliary subunits of Na-K-ATPase and regulate Na-K-ATPase activity in a tissue- and isoform-specific way. These results highlight the complexity of the regulation of Na+and K+handling by Na-K-ATPase, which is necessary to ensure appropriate tissue functions such as renal Na+reabsorption, muscle contractility, and neuronal excitability. Moreover, a mutation in FXYD2 has been linked to cases of human hypomagnesemia, indicating that perturbations in the regulation of Na-K-ATPase by FXYD proteins may be critically involved in pathophysiological states. A better understanding of this novel regulatory mechanism of Na-K-ATPase should help in learning more about its role in pathophysiological states. This review summarizes the present knowledge of the role of FXYD proteins in the modulation of Na-K-ATPase as well as of other proteins, their regulation, and their structure-function relationship.
The extracellular calcium-sensing receptor (CaSR) plays a major role in the maintenance of a physiological serum ionized calcium (Ca2+) concentration by regulating the circulating levels of parathyroid hormone. It was molecularly identified in 1993 by Brown et al. in the laboratory of Dr. Steven Hebert with an expression cloning strategy. Subsequent studies have demonstrated that the CaSR is highly expressed in the kidney, where it is capable of integrating signals deriving from the tubular fluid and/or the interstitial plasma. Additional studies elucidating inherited and acquired mutations in the CaSR gene, the existence of activating and inactivating autoantibodies, and genetic polymorphisms of the CaSR have greatly enhanced our understanding of the role of the CaSR in mineral ion metabolism. Allosteric modulators of the CaSR are the first drugs in their class to become available for clinical use and have been shown to treat successfully hyperparathyroidism secondary to advanced renal failure. In addition, preclinical and clinical studies suggest the possibility of using such compounds in various forms of hypercalcemic hyperparathyroidism, such as primary and lithium-induced hyperparathyroidism and that occurring after renal transplantation. This review addresses the role of the CaSR in kidney physiology and pathophysiology as well as current and in-the-pipeline treatments utilizing CaSR-based therapeutics.
The loss of glomerular visceral epithelial cells (podocytes) has been associated with the development of glomerular sclerosis and loss of renal function. Viability of podocytes recovered from urine of subjects with glomerular disease and of healthy controls was investigated by propidium iodide exclusion and TUNEL staining. Podocyte loss was quantified by cytospin. The growth behavior in culture of urinary cells and their expression of specific markers were examined. The majority of urinary podocytes are viable, although apoptosis occurs in about one-half of the cells. Patients with active glomerular disease excreted up to 388 podocytes/mg creatinine, whereas healthy controls and patients with quiescent disease generally excreted <0.5 podocytes/mg creatinine. The identity of cultured cells was confirmed by their morphology, growth behavior, and expression of podocyte-specific markers. The difference in growth behavior between healthy controls and subjects with active glomerular disease suggests that in active disease viable podocytes detach from the glomerular tuft due to local environmental factors rather than defects in the podocytes per se, whereas in healthy individuals mostly senescent podocytes are shed.