Structural determinants of glomerular permeability

American Journal of Physiology - Renal Physiology - Tập 281 Số 4 - Trang F579-F596 - 2001
William M. Deen1,2, Matthew J. Lazzara1, Bryan D. Myers3
1‡Department of Chemical Engineering, and
2Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and
3Nephrology Division, Stanford University Medical Center, Stanford, California 94305

Tóm tắt

Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the endothelial glycocalyx and epithelial slit diaphragm to the overall hydraulic resistance and macromolecule selectivity and the nanostructural basis for the observed permeability properties of the GBM.

Từ khóa


Tài liệu tham khảo

10.1152/ajprenal.1987.253.5.F783

10.1006/jcis.1995.1096

Anderson JL, 1981, J Polym Sci, 19, 405

10.1016/S0006-3495(74)85962-X

10.1016/0026-2862(91)90031-6

10.1152/ajprenal.1997.273.3.F430

10.1021/ma00136a011

10.1152/ajprenal.1998.274.5.F889

10.1002/pol.1982.180200508

10.1038/ki.1984.49

10.1152/ajprenal.1998.274.4.F700

10.1006/abbi.1997.9920

10.1038/ki.1975.104

10.1016/S0006-3495(75)85863-2

10.1103/PhysRevE.61.616

10.1063/1.869278

10.1016/S0925-4439(97)00038-0

10.1016/0014-5793(95)01171-A

10.1038/ki.1995.178

10.1042/bj2890647

10.1042/bj2970031

10.1016/0026-2862(80)90024-2

10.1152/ajpheart.1989.257.5.H1354

Daniels BS., 1994, J Lab Clin Med, 124, 224

10.1172/JCI116668

10.1152/ajprenal.1992.262.6.F919

10.1016/S0376-7388(00)82442-4

10.1152/ajprenal.1980.238.2.F126

10.1115/1.2895718

10.1152/ajprenal.1994.266.1.F1

10.1115/1.2794202

10.1172/JCI117435

10.1016/S0006-3495(97)78660-0

10.1152/ajprenal.1999.276.6.F892

10.1016/S0006-3495(97)78659-4

10.1038/ki.1987.268

10.1016/0021-9797(90)90008-C

10.1038/ki.1991.253

10.1002/aic.690270109

10.1172/JCI116831

10.1038/ki.1992.43

10.1111/j.1748-1716.1987.tb08047.x

10.1016/S0002-9440(10)65483-1

Hora K, 1990, Eur J Cell Biol, 53, 402

10.1002/cjce.5450640302

10.1016/S0006-3495(95)80328-0

10.1016/S0006-3495(96)79645-5

10.1006/jcis.1996.0173

10.1111/j.1748-1716.1993.tb09466.x

10.1016/S0376-7388(98)00260-9

10.1083/jcb.81.1.137

10.1016/S0376-7388(97)00037-9

10.1002/jemt.1060140110

10.1046/j.1523-1755.1998.00097.x

10.1002/aja.1001690408

10.1006/jcis.2000.6800

10.1016/0026-2862(89)90007-1

10.1086/302182

10.1046/j.1365-201X.1998.0316f.x

Luft JH., 1966, Federation Proc, 25, 1773

10.1016/S0022-5320(66)80108-9

10.1038/ki.1993.52

10.1172/JCI114543

10.1016/0021-9797(86)90213-4

10.1039/tf9585401754

10.1098/rspa.1973.0064

10.1152/ajprenal.2000.279.1.F84

10.1152/ajprenal.2001.280.3.F396

Oliver JD, 1992, J Am Soc Nephrol, 3, 214, 10.1681/ASN.V32214

10.1038/ki.1995.227

10.1016/S0304-4165(98)00025-7

10.1111/j.1440-1797.1996.tb00088.x

10.1172/JCI119163

10.1152/ajprenal.1998.274.1.F223

10.1016/S0006-3495(00)76566-0

Reisner J, 2000, J Am Soc Nephrol, 11, 1, 10.1681/ASN.V1111

Remuzzi A, 1993, J Am Soc Nephrol, 4, 40, 10.1681/ASN.V4140

10.1038/ki.1978.41

10.1016/0026-2862(89)90015-0

10.1083/jcb.60.2.423

10.1006/mvre.1996.1987

10.1073/pnas.96.14.7962

10.1038/ki.1976.5

10.1083/jcb.67.2.436

10.1083/jcb.52.1.198

10.1146/annurev.ph.48.030186.001431

10.1046/j.1365-201x.1998.00315.x

Squarer A, 1998, J Am Soc Nephrol, 9, 1389, 10.1681/ASN.V981389

10.1038/ki.1991.79

10.1152/ajprenal.1991.260.4.F549

10.1152/ajprenal.1992.263.4.F601

Tryggvason K., 1999, J Am Soc Nephrol, 10, 2440, 10.1681/ASN.V10112440

10.1006/abbi.1996.0334

10.1038/ki.1995.140

10.1016/0925-4439(92)90035-L

Webber WA, 1970, Lab Invest, 23, 1

10.1021/ma0008793

10.1016/0301-4622(90)80052-9