Renal Na+-glucose cotransporters

American Journal of Physiology - Renal Physiology - Tập 280 Số 1 - Trang F10-F18 - 2001
Ernest M. Wright1
1Department of Physiology, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751

Tóm tắt

In humans, the kidneys filter ∼180 g of d-glucose from plasma each day, and this is normally reabsorbed in the proximal tubules. Although the mechanism of reabsorption is well understood, Na+-glucose cotransport across the brush-border membrane and facilitated diffusion across the basolateral membrane, questions remain about the identity of the genes responsible for cotransport across the brush border. Genetic studies suggest that two different genes regulate Na+-glucose cotransport, and there is evidence from animal studies to suggest that the major bulk of sugar is reabsorbed in the convoluted proximal tubule by a low-affinity, high-capacity transporter and that the remainder is absorbed in the straight proximal tubule by a high-affinity, low-capacity transporter. There are at least three different candidates for these human renal Na+-glucose cotransporters. This review will focus on the structure-function relationships of these three transporters, SGLT1, SGLT2, and SGLT3.

Từ khóa


Tài liệu tham khảo

10.1152/ajprenal.1981.241.3.F322

10.1016/0167-4781(90)90028-Z

10.2337/diab.41.6.766

10.1159/000166826

10.1007/s00232001081

10.1038/990031

10.1172/JCI106268

10.1172/JCI106150

10.1074/jbc.272.43.27230

Eskandari S, 1999, FASEB J, 13, A399

10.1073/pnas.95.19.11235

10.1016/S0006-3495(98)74006-8

10.1038/ng1197-327

10.1007/BF00234656

10.1038/35012518

10.1007/s002329900169

10.1016/0888-7543(89)90333-9

10.1038/330379a0

10.1073/pnas.84.9.2634

10.1073/pnas.86.15.5748

10.1074/jbc.272.4.2110

10.1152/ajpgi.1996.270.6.G919

10.1152/ajpcell.1991.261.2.C296

10.1016/0006-291X(91)92067-T

10.1074/jbc.273.41.26400

Kaback HR., 1998, Acta Physiol Scand Suppl, 643, 21

10.1172/JCI116972

Kong CT, 1993, J Biol Chem, 268, 1509, 10.1016/S0021-9258(18)53880-1

10.1042/bj2910435

10.1111/j.1469-7793.2000.00251.x

10.1074/jbc.273.35.22657

10.1073/pnas.90.12.5767

10.1073/pnas.95.13.7789

10.1111/j.1469-7793.1999.0195r.x

10.1073/pnas.93.23.13367

Mackenzie B, 1994, J Biol Chem, 269, 22488, 10.1016/S0021-9258(17)31672-1

10.1074/jbc.271.51.32678

10.1007/s002329900347

10.1111/j.1469-7793.1998.015br.x

10.1007/s002329900121

Pajor AM, 1992, J Biol Chem, 267, 3557, 10.1016/S0021-9258(19)50557-9

10.1074/jbc.272.33.20324

10.1016/S0014-5793(99)01292-2

10.1074/jbc.271.17.10029

Panayotova-Heiermann M, 1994, J Biol Chem, 269, 21016, 10.1016/S0021-9258(17)31923-3

10.1074/jbc.270.45.27099

10.1021/bi9800395

10.1007/BF00235797

10.1007/BF00235798

10.1073/pnas.81.7.2223

Peerce BE, 1984, J Biol Chem, 259, 14105, 10.1016/S0021-9258(18)89863-5

Peerce BE, 1985, J Biol Chem, 260, 6026, 10.1016/S0021-9258(18)88932-3

10.1073/pnas.83.21.8092

10.1021/bi00388a014

10.1021/bi991256o

10.1038/ng1197-324

10.1016/S0014-5793(00)01255-2

10.1016/0005-2736(92)90144-B

10.1073/pnas.87.4.1456

10.1177/39.3.1993828

10.1074/jbc.M003127200

10.1006/geno.1993.1399

Turk E, 1994, J Biol Chem, 269, 15204, 10.1016/S0021-9258(17)36592-4

10.1007/s002329900264

10.1152/ajprenal.1982.242.4.F406

10.1007/BF01871587

10.1073/pnas.74.7.2825

10.1021/bi992442x

10.1152/ajprenal.1992.263.3.F459

10.1006/geno.1993.1411

10.1152/ajpgi.1998.275.5.G879

10.1074/jbc.M002687200

10.1074/jbc.270.49.29365

10.1007/BF00234157