Tribological performance of nanoparticles as lubricating oil additives
Tóm tắt
Tài liệu tham khảo
Alves SM, Barros BS, Trajano MF, Ribeiro KSB, Moura E (2013) Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65:28–36. doi:10.1016/j.triboint.2013.03.027
Amiruddin H, Abdollah M, Idris A, Abdullah M, Tamaldin N (2015) Stability of nano-oil by pH control in stationary conditions. Proc Mech Eng Res Day 2015 2015:55–56
Asrul M, Zulkifli NWM, Masjuki HH, Kalam MA (2013) Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Eng 68:320–325. doi:10.1016/j.proeng.2013.12.186
Castillo Marcano SJ, Bensaid S, Deorsola FA, Russo N, Fino D (2014) Nanolubricants for diesel engines: related emissions and compatibility with the after-treatment catalysts. Tribol Int 72:198–207. doi:10.1016/j.triboint.2013.10.018
Çelik ON, Ay N, Göncü Y (2013) Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part Sci Technol 31:501–506. doi:10.1080/02726351.2013.779336
Chen S, Liu W (2006) Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater Chem Phys 98:183–189. doi:10.1016/j.matchemphys.2005.09.043
Das SK, Bedar A, Kannan A, Jasuja K (2015) Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci Rep 5:10522 doi:10.1038/srep10522. http://www.nature.com/articles/srep10522#supplementary-information
Fernandez J, Viesca J, Hernandez Battez A (2008) Tribological behaviour of copper oxide nanoparticle suspension. Paper presented at the Lubrication Management and Technology Conference and Exhibition, San Sebastian; 2008
Ginzburg B, Shibaev L, Kireenko O, Shepelevskii A, Baidakova M, Sitnikova A (2002) Antiwear effect of fullerene C 6 0 additives to lubricating oils. Russ J Appl Chem 75:1330–1335
Greco A, Mistry K, Sista V, Eryilmaz O, Erdemir A (2011) Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear 271:1754–1760. doi:10.1016/j.wear.2010.11.060
Greenberg R, Halperin G, Etsion I, Tenne R (2004) The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett 17:179–186
Gulzar M et al (2015b) Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol Int 88:271–279. doi:10.1016/j.triboint.2015.03.035
Hernández Battez A, González R, Felgueroso D, Fernández JE, del Rocío Fernández M, García MA, Peñuelas I (2007) Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 263:1568–1574. doi:10.1016/j.wear.2007.01.093
Hernández Battez A et al (2008b) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265:422–428. doi:10.1016/j.wear.2007.11.013
Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257:5720–5725. doi:10.1016/j.apsusc.2011.01.084
Kheireddin BA (2013) Tribological properties of nanopartice-based lubrication systems. Texas A&M University, College Station
Koshy CP, Rajendrakumar PK, Thottackkad MV (2015) Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear 330–331:288–308. doi:10.1016/j.wear.2014.12.044
Liu G, Li X, Qin B, Xing D, Guo Y, Fan R (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966. doi:10.1007/s11249-004-8109-6
Ma S, Zheng S, Cao D, Guo H (2010) Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology 8:468–472. doi:10.1016/j.partic.2009.06.007
Martin JM, Ohmae N (2008) Nanolubricants, vol 13. John Wiley & Sons, New York
Nallasamy P, Saravanakumar N, Nagendran S, Suriya E, Yashwant D (2014) Tribological investigations on MoS2-based nanolubricant for machine tool slideways. Proc Inst Mech Eng Part J. doi:10.1177/1350650114556394
Ohmae N, Martin JM, Mori S (2005) Micro and nanotribology. ASME Press, New York
Padgurskas J, Rukuiza R, Prosyčevas I, Kreivaitis R (2013) Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol Int 60:224–232. doi:10.1016/j.triboint.2012.10.024
Peña-Parás L, Taha-Tijerina J, Garza L, Maldonado-Cortés D, Michalczewski R, Lapray C (2015) Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear 332–333:1256–1261. doi:10.1016/j.wear.2015.02.038
Peng DX, Kang Y, Chen SK, Shu FC, Chang YP (2010b) Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Ind Lubr Tribol 62:341–348. doi:10.1108/00368791011076236
Rabaso P et al (2014) Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320:161–178. doi:10.1016/j.wear.2014.09.001
Ran X, Yu X, Zou Q (2016) Effect of particle concentration on tribological properties of ZnO nanofluids. Tribol Trans. doi:10.1080/10402004.2016.1154233
Rapoport L et al (2003) Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255:785–793. doi:10.1016/s0043-1648(03)00044-9
Sgroi M et al (2015) Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol Trans 58:207–214. doi:10.1080/10402004.2014.960540
Su Y, Gong L, Chen D (2015) An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomater 2015:7. doi:10.1155/2015/276753
Sui T, Song B, Zhang F, Yang Q (2015) Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. J Nanomater 2015:9. doi:10.1155/2015/492401
Thakur MRN, Srinivas DV, Jain DAK (2016) Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribol Trans. doi:10.1080/10402004.2016.1142034
Verma A, Jiang W, Abu Safe HH, Brown WD, Malshe AP (2008) Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribol Trans 51:673–678. doi:10.1080/10402000801947691
Viesca JL, Hernández Battez A, González R, Chou R, Cabello JJ (2011b) Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int 44:829–833. doi:10.1016/j.triboint.2011.02.006
Wan Q, Jin Y, Sun P, Ding Y (2015) Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng 102:1038–1045. doi:10.1016/j.proeng.2015.01.226
Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262:819–825. doi:10.1016/j.wear.2006.08.021
Yu H-l, Xu Y, Shi P-J, Xu B-S, Wang X-L, Liu Q (2008) Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans Nonferrous Metals Soc China 18:636–641. doi:10.1016/S1003-6326(08)60111-9
Zainal N, Zulkifli N, Yusoff M, Masjuki H, Yunus R (2015) The feasibility study of CaCO3 derived from cockleshell as nanoparticle in chemically modified lubricant. In: Proceedings of Malaysian international tribology conference 2015. Malaysian Tribology Society, pp 209-210
Zhang Y, Xu Y, Yang Y, Zhang S, Zhang P, Zhang Z (2015) Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives. Ind Lubr Tribol 67:227–232. doi:10.1108/ILT-10-2012-0098
Zin V, Agresti F, Barison S, Colla L, Fabrizio M (2015) Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil. J Nanosci Nanotechnol 15:3590–3598. doi:10.1166/jnn.2015.9839