Mechanics and Friction at the Nanometer Scale
Tóm tắt
In this overview, we will give an introduction to experiments in which manipulation is used a means of uncovering the intrinsic response and dynamical behavior of small objects. Experiments done on individual particles reveal new and rich behaviors that are inaccessible to averaging methods. Experiments exploring the stiffness and toughness of carbon nanotubes will be presented showing that nanometer scale engineered materials can far outperform current engineering materials. Through AFM manipulation, imaging and force measurements, the stiffness of this material was found to equal or exceed diamond. Their toughness is also extraordinary. Due to their near crystalline perfection, carbon nanotubes are able to undergo strains exceeding 15% during bending without damage. Through AFM manipulation experiments, these large deformations have been shown to be highly reversible. Experiments in which the lateral force of manipulation of small objects across surfaces is measured show that friction at the nanometer scale occurs without wear processes and is an intrinsic property of the particular interface. Results are also presented showing anisotropic behavior in friction and movement due to commensurate lattice effects. At the nanometer scale, the contacting surfaces can be nearly perfect so that commensurate effects are not partially averaged out by many differently oriented domains. It has been shown that friction can very over an order of magnitude depending on the relative orientation of the contacting surfaces. The relative orientation of object and substrate lattices also can determine the modes of motion. In some cases the particle is confined to move in one direction. In other cases the relative orientation determines whether the particle rolls, rotates in-plane or slides. These effects may have implications on the fundamental mechanisms of friction. They provide a laboratory for testing different geometrical configurations of atoms sliding on atoms. The results may also have implications in the design of nanometer scale electromechanical mechanisms.
Tài liệu tham khảo
A-Hassan E., W.F. Heinz, M.D. Antonik, N.P. D'Costa, S. Nageswaran, C.A. Schoenenberger & J.H. Hoh, 1998. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564-1578.
Bardotti L., P. Jensen, A. Hoareau, M. Treilleux & B. Cabaud, 1995. Experimental-observation of fast diffusion of large antimony clusters on graphite surfaces. Phys. Rev. Lett. 74, 4694-4697.
Baur C., A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch & P. Will, 1998. Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. Nanotechnology 9, 360-364.
Bhushan B., J.N. Israelachvili & U. Landman, 1995. Nanotribology: fricion, wear, and lubrication at the atomic scale. Nature 374, 607-616.
Binnig G., C.F. Quate & C. Gerber, 1986. Atomic force microscope. Phys. Rev. Lett. 56, 930-933.
Binnig G., H. Rohrer, C. Berber & E. Weibel, 1982. Phys. Rev. Lett. 49, 57-60.
Bowden F.P. & D. Tabor, 1956. Friction and Lubrication. Londone, Methuen.
Bower C., R. Rosen, L. Jin, J. Han & O. Zhou, 1999. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74, 3317-3319.
Buldum A. & J.P. Lu, 1999. Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050-5053.
Carpick R.W., N. Agrait, D.F. Ogletree and M. Salmeron, 1996. Variation of the interfactial shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334-3340.
Dayo A., W. Alnasrallah & J. Krim, 1998. Superconductivity dependent sliding friction. Phys. Rev. Lett. 80, 1690-1693.
Dowson D., 1979. History of Tribology. London, Longman Group Limited.
Dresselhaus M.S., G. Dresselhaus & P.C. Eklund, 1996. Science of Fullerenes and Carbon Nanotubes. San Diego, Academic Press.
Drexler K.E., 1992. Nanosystems. New York, John Wiley and Sons, Inc.
Ebbesen T.W., 1997. Properties: Experimental Results. Carbon Nanotubes: Preparation and Properties. T.W. Ebbesen. Boca Raton, CRC Press, pp. 225-248.
Ebbesen T.W. & P.M. Ajayan, 1992. Large scale synthesis of carbon nanotubes. Nature 358, 16.
Eigler D.M. & E.K. Schweizer, 1990. Positioning single atoms with a scanning tunneling microcope. Nature 344, 524-526.
Enachescu M., R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse & M. Salmeron, 1998. Atomic force microscopy study of an ideally hard contact: The diamond( 111) tungsten carbide interface. Phys. Rev. Lett. 81, 1877-1880.
Enachescu M., R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse & M. Salmeron, 1999. Observation of proportionality between friction and contact area at the nanometer scale. Tribol. Lett. 7, 73-78.
Falvo M., 1997. Ph.D. thesis. University of North Carolina, 1997.
Falvo M.R., G.J. Clary, R.M.I. Taylor, V. Chi, F.P.J. Brooks, S. Washburn & R. Superfine, 1997a. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582-584.
Falvo M.R., R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr., S. Washburn & R. Superfine, 1999. Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236-238.
Falvo M.R., S. Washburn, R. Superfine, M. Finch, F.P.J. Brooks, V. Chi & R.M.I. Taylor, 1997b. Manipulation of individual viruses: friction and mechanical properties. Biophys. J. 72, 1396-1403.
Florin E.-L., V.T. Moy & H.E. Gaub, 1994. Adhesion forces between individual ligand-receptor pairs. Science 264, 415-417.
Globus A., W. Bauschlicher Jr., J. Han, R.L. Jaffe, C. Levit & Srivastiava, 1998. Machine phase fullerene nanotechnology. Nanotechnology 9, 192-199.
Greenwood J.A. & J.P.B.Williamson, 1966. Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300-319.
Harrison J.A., C.T. White, R.J. Colton and D.W. Brenner, 1992. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B 46, 9700-9708.
He G., M.H. Muser & M.O. Robbins, 1999. Adsorbed layers and the origin of static friction. Science 284, 1650-1652.
Hertel T., R. Martel & P. Avouris, 1998. Manipulation of individual carbon nanotubes and their interactions with surfaces. J.Phys. Chem. B 102, 910-915.
Hirano H., K. Shinjo, R. Kaneko & Y. Murata, 1991. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642-2645.
Iijima S., 1991. Helical microtubules of graphitic carbon. Nature 354, 56-58.
Iijima S., C. Brabec, A. Maiti & J. Bernholc, 1996. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089-2092.
Israelachvili J.N., P.M. McGuiggan & A.M. Homola, 1988. Dynamic properties of molecularly thin liquid-Films. Science 240, 189-191.
Jung T.A., R.R. Schlitter, J.K. Gimzewski, H. Tang & C. Joachim, 1995. Controlled room-temperature positioning of individual molecules: molecular flexure and motion. Science 271, 181-184.
Junno T., K. Deppert, L. Montelius & L. Samuelson, 1995. Controlled manipulations of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66, 3627-3629.
Kelly A., 1986. Strong Solids. London, Oxford University Press.
Lantz M.A., S.J. ÓShear, M.E. Welland & K.L. Johnson, 1997. Atomic-force-microscope study of contact area and friciton on NbSe2. Phys. Rev. B 55, 10776-10785.
Legtenberg R., H.A.C. Tilmans, J. Elders & M. Elwenspoek, 1994. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms. Sensors. Actuator. A 43, 230-238.
Liley M., D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham & C. Duschl, 1998. Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280, 273-275.
Liu J., G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, J.P. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, R.L. Lee, D.T. Colbert & R.E. Smalley, 1998. Fullerene pipes. Science 280, 1253-1256.
Luedtke W.D. & U. Landman, 1999. Slip diffusion and Levy flights of an adsorbed gold nanocluster (vol. 82, p. 3835, 1999). Phys. Rev. Lett. 83, 3835-3838.
Luthi R., E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer & H.-J. Guntherodt, 1994. Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science 266, 1979-1981.
Mak C. & J. Krim, 1998. Quartz-crystal microbalance studies of the velocity dependence of interfacial friction. Phys. Rev. B-Condens. Matter 58, 5157-5159.
Manoharan H.C., C.P. Lutz & D.M. Eigler, 2000. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512-515.
Mate C.M., 1995. Force microscopy studies of the molecular origins of friction and lubrication. IBM J. Res. Develop. 39, 617-626.
Mate M.C., G.M. McClelland, R. Erlandsson & S. Chiang, 1987. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942-1945.
Meyer E., R. Overney, D. Brodbeck, L. Howald, R. Luthi, J. Frommer & H.J. Guntherodt, 1992. Friction and wear of Langmuir-blodgett films observed by friction force microscopy. Phys. Rev. Lett. 69, 1777-1780.
Moy V.T., E.L. Florin & H.E. Gaub, 1994. Intermolecular forces and energies between ligands and receptors. Science 266, 257-259.
Oberhauser A.F., P.E. Marszalek, H.P. Erickson & J.M. Fernandez, 1998. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181-185.
Overney R.M., E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.J. Guntherodt, M. Fujihira, H. Takano & Y. Gotoh, 1992. Friction measurements on phase-separated thin-films with a modified atomic force microscope. Nature 359, 133-135.
Overney R.M., H. Takano, M. Fujihira, W. Paulus & H. Ringsdorf, 1994. Anisotropy in friction and molecular stick-slip motion. Phys. Rev. Lett. 72, 3546-3549.
Paulson S., M.R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R.M. Taylor, R. Superfine & S. Washburn, 1999. In situ resistance measurements of strained carbon nanotubes. Appl. Phys. Lett. 75, 2936-2938.
Persson B.N.J., 1998. Sliding Friction: Physical Principles and Applications. Berlin, Springer-Verlag.
Poncharal P., Z.L. Wang, D. Ugarte & W.A. de Heer, 1999. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513-1516.
Resch R., D. Lewis, S. Meltzer, N. Montoya, B.E. Koel, A. Madhukar, A.A.G. Requicha & P. Will, 2000. Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. Ultramicroscopy 82, 135-139.
Rief M., M. Gautel, F. Oesterhelt, J.M. Fernandez & H.E. Gaub, 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109-1112.
Sasaki N., M. Tsukada, S. Fujisawa, Y. Sugawara, S. Morita & K. Kobayashi, 1998. Load dependence of the frictional-force microscopy image pattern of the graphite surface. Phys. Rev. B-Condens. Matter 57, 3785-3786.
Sheehan P.E. & C.M. Lieber, 1996. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158-1161.
Singer I.L., R.N. Bolster, J. Wegand, S. Fayeulle & B.C. Stupp, 1990. Hertzian stress contribution to low friction behavior of thin Mos2 coatings. Appl. Phys. Lett. 57, 995-997.
Sokoloff J.B., 1990. Theory of energy dissipation in sliding crystal surfaces. Phys. Rev. B 42, 760-765.
Sorensen M.R., K.W. Jacobsen & P. Stoltze, 1996. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101-2112.
Thess A., R. Lee & R.E. Smalley, 1996. Crystalline ropes of metallic carbon nanotubes. Science 273, 483.
Tomanek D., 1993. Theory of atomic-scale friction. Scanning Tunneling Microscopy 3. R.Wiesendanger & H.-J. Guntherodt. Berlin, Springer-Verlag, pp. 269-292.
Walters D.A., L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith & R.E. Smalley, 1999. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803-3805.
Wang S.C., U. Kurpick & G. Ehrlich, 1998. Surface diffusion of compact and other clusters: Ir-x on Ir(111). Phys. Rev. Lett. 81, 4923-4926.
Weisenhorn A.L., J.E. MacDougall, S.A. Gould, S.D. Cox, W.S. Wise, J. Massie, P. Maivald, V.B. Elings, G.D. Stucky & P.K. Hansma, 1990. Imaging and manipulating molecules on a zeolite surface with an atomic force microscope. Science 247, 1330-1333.
Wen J.M., S.L. Chang, J.W. Burnett, J.W. Evans & P.A. Thiel, 1994. Diffusion of large 2-dimensional Ag clusters on Ag(100). Phys. Rev. Lett. 73, 2591-2594.
Wong E.W., P.E. Sheehan & C.M. Lieber, 1997. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971-1975.
Yakobson B.I., C.J. Brabec & J. Bernholc, 1996. Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76, 2511-2514.
Yakobson B.I., M.P. Campbell, C.J. Brabec & J. Bernholc, 1997. Tensile strength, atomistics of fracture, and C-chain unraveling in carbon nanotubes. J. Comput. Aided Mat. Des. 3, 173.
Yoshizawa H., Y.-L. Chen & J. Israelachvili, 1993. Fundamental mechanism of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128-4140.
Yu M.F., B.S. Files, S. Arepalli & R.S. Ruoff, 2000. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552-5555.
Zhou O., R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez & S.H. Glarum, 1994. Defects in carbon nanostructures. Science 263, 1744-1747.