Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives

Wear - Tập 280 - Trang 36-45 - 2012
M. Kalin1, J. Kogovšek1, M. Remškar2,3
1Centre for Tribology and Technical Diagnostics, Faculty of Mechanical Engineering, University of Ljubljana, Bogišičeva 8, 1000 Ljubljana, Slovenia
2Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
3Centre of Excellence Namaste, Jamova 39, 1000 Ljubljana, Slovenia

Tài liệu tham khảo

Roberts, 1990, Thin solid lubricant films in space, Tribol. Int., 23, 95, 10.1016/0301-679X(90)90042-N Singer, 1992, Solid lubrication processes, 237 Martin, 1993, Superlubricity of molybdenum disulphide, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 10583, 10.1103/PhysRevB.48.10583 Singer, 1996, Mechanics and chemistry of solids in sliding contact, Langmuir, 12, 4486, 10.1021/la951056n Bhushan, 1993, Fullerene (C60) films for solid lubrication, Tribol. Trans., 36, 573, 10.1080/10402009308983197 Gupta, 1994, Fullerene particles as an additive to liquid lubricants and greases for low friction and wear, Lubric. Eng., 50, 524 Schwarz, 1997, Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds, Phys. Rev. B: Condens. Matter Mater. Phys., 56, 6987, 10.1103/PhysRevB.56.6987 Feng-yuan, 1997, The antifriction behaviours of C60/C70, J. Phys. D: Appl. Phys., 30, 781, 10.1088/0022-3727/30/5/010 Buldum, 1999, Atomic scale sliding and rolling of carbon nanotubes, Phys. Rev. Lett., 83, 5050, 10.1103/PhysRevLett.83.5050 Ni, 2001, Tribological properties of carbon nanotube bundles predicted from atomistic simulations, Surf. Sci., 487, 87, 10.1016/S0039-6028(01)01073-1 Chen, 2003, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon, 41, 215, 10.1016/S0008-6223(02)00265-8 Joly-Pottuz, 2004, Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs), Tribol. Int., 37, 1013, 10.1016/j.triboint.2004.07.019 Miyoshi, 2005, Solid lubrication by multiwalled carbon nanotubes in air and in vacuum, Tribol. Lett., 19, 191, 10.1007/s11249-005-6146-4 Vander Wal, 2011, Transfer layers: a comparison across SWNTs, DWNTs, graphite, and an ionic fluid, Adv. Tribol., 2011, 1, 10.1155/2011/929642 Cabioc’h, 2002, Structure and properties of carbon onion layers deposited onto various substrates, J. Appl. Phys., 91, 1560, 10.1063/1.1421222 Hirata, 2004, Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles, Tribol. Int., 37, 899, 10.1016/j.triboint.2004.07.006 Street, 2004, Evaluation of the tribological behavior of nano-onions in Krytox 143AB, Tribol. Lett., 16, 143, 10.1023/B:TRIL.0000009724.01711.f4 Matsumoto, 2007, Application of onion-like carbon to micro and nanotribology, Diamond Relat. Mater., 16, 1227, 10.1016/j.diamond.2007.01.031 Tenne, 1992, Polyhedral and cylindrical structures of tungsten disulphide, Nature, 360, 444, 10.1038/360444a0 Margulis, 1993, Nested fullerene-like structures, Nature, 365, 113, 10.1038/365113b0 Feldman, 1995, High rate gas phase growth of MoS2 nested inorganic fullerenes and nanotubes, Science, 267, 222, 10.1126/science.267.5195.222 Rapoport, 1997, Hollow nanoparticles of WS2 as potential solid-state lubricants, Nature, 387, 791, 10.1038/42910 Cizaire, 2002, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles, Surf. Coat. Technol., 160, 282, 10.1016/S0257-8972(02)00420-6 Joly-Pottuz, 2005, Ultralow-friction and wear properties of IF-WS2 under boundary lubrication, Tribol. Lett., 18, 477, 10.1007/s11249-005-3607-8 Moshkovith, 2007, Sedimentation of IF-WS2 aggregates and a reproducibility of the tribological data, Tribol. Int., 40, 117, 10.1016/j.triboint.2006.02.067 Tannous, 2010, Synthesis and tribological performance of novel MoxW1−xS2 (0≤x≤1) inorganic fullerenes, Tribol. Lett., 37, 83, 10.1007/s11249-009-9493-8 Chhowalla, 2000, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature, 407, 164, 10.1038/35025020 Rapoport, 2001, Slow release of fullerene-like WS2 nanoparticles as a superior solid lubrication mechanism in composite matrices, Adv. Eng. Mater., 3, 71, 10.1002/1527-2648(200101)3:1/2<71::AID-ADEM71>3.0.CO;2-M Rapoport, 2001, Slow release of fullerene-like WS2 nanoparticles from Fe–Ni graphite matrix: a self-lubricating nanocomposite, Nano Lett., 1, 137, 10.1021/nl005516v Rapoport, 2001, Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles, Wear, 249, 150, 10.1016/S0043-1648(01)00519-1 Rapoport, 1999, Inorganic fullerene-like material as additives to lubricants: structure–function relationship, Wear, 225–229, 975, 10.1016/S0043-1648(99)00040-X Rapoport, 2003, Modification of contact surfaces by fullerene-like solid lubricant nanoparticles, Surf. Coat. Technol., 163–164, 405, 10.1016/S0257-8972(02)00729-6 Golan, 1999, Microtribology and direct force measurement of WS2 nested fullerene-like nanostructures, Adv. Mater., 11, 934, 10.1002/(SICI)1521-4095(199908)11:11<934::AID-ADMA934>3.0.CO;2-L Yang, 2006, Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance, Nanotechnology, 17, 1512, 10.1088/0957-4484/17/5/058 Rapoport, 2005, Friction and wear of fullerene-like WS2 under severe contact conditions: friction of ceramic materials, Tribol. Lett., 19, 143, 10.1007/s11249-005-5095-2 Moshkovith, 2006, Friction of fullerene-like WS2 nanoparticles: effect of agglomeration, Tribol. Lett., 24, 225, 10.1007/s11249-006-9124-6 Rapoport, 2005, Behavior of fullerene-like WS2 nanoparticles under severe contact conditions, Wear, 259, 703, 10.1016/j.wear.2005.01.009 Jolly-Pottuz, 2008, Nanoparticles made of metal dichalcogenides, 15 Natha, 2002, Mo1−xWxS2 nanotubes and related structures, Chem. Phys. Lett., 352, 163, 10.1016/S0009-2614(01)01456-7 Chen, 2003, Novel hydrogen storage properties of MoS2 nanotubes, J. Alloys Compd., 356–357, 413, 10.1016/S0925-8388(03)00114-2 Remskar, 2001, Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes, Science, 292, 479, 10.1126/science.1059011 Remskar, 2007, Inorganic nanotubes as nanoreactors: the first MoS2 nanopods, Adv. Mater., 19, 4276, 10.1002/adma.200701784 Remskar, 2009, The MoS2 nanotube hybrids, Appl. Phys. Lett., 95, 133122, 10.1063/1.3240892 Tallian, 1967, On competing failure modes in rolling contact, ASLE Trans., 10, 418, 10.1080/05698196708972201 Leshchinsky, 2004, Behavior of solid lubricant nanoparticles under compression, J. Mater. Sci., 39, 4119, 10.1023/B:JMSC.0000033392.89434.87 Rapoport, 2007, On the efficacy of IF-WS2 nanoparticles as solid lubricant: the effect of the loading scheme, Tribol. Lett., 28, 81, 10.1007/s11249-007-9250-9 Rosentsveig, 2009, Fullerene-like MoS2 nanoparticles and their tribological behavior, Tribol. Lett., 36, 175, 10.1007/s11249-009-9472-0 Tannous, 2011, Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication, Tribol. Lett., 41, 55, 10.1007/s11249-010-9678-1 Lahouij, 2011, In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact, Tribol. Lett., 42, 133, 10.1007/s11249-011-9755-0 Lahouij, 2012, Real time TEM imaging of compression and shear of single fullerene-like MoS2 nanoparticle, Tribol. Lett., 45, 131, 10.1007/s11249-011-9873-8 Rapoport, 2003, Superior tribological properties of powder materials with solid lubricant nanoparticles, Wear, 255, 794, 10.1016/S0043-1648(03)00285-0 Rapoport, 2003, Tribological properties of WS2 nanoparticles under mixed lubrication, Wear, 255, 785, 10.1016/S0043-1648(03)00044-9