Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control
Tóm tắt
Tài liệu tham khảo
Rogachev, A.S., Shugaev, V.A., Kachelmyer, C.R., and Varma, A., Mechanisms of structure formation during combustion synthesis of materials, Chem. Eng. Sci., 1994, vol. 49, no. 24, pp. 4949–4958. doi 10.1016/0009-2509(94)00389-0
Merzhanov, A.G., Fluid dynamics phenomena in the processes of self-propagating high-temperature synthesis, Combust. Sci. Technol., 1995, vol. 105, nos. 4–6, pp. 295–325. doi 10.1080/00102209508907756
Gillan, E.G. and Kaner, R.B., Synthesis of refractory ceramics via rapid metathesis reactions between solidstate precursors, Chem. Mater., 1996, vol. 8, no. 2, pp. 333–343. doi 10.1021/cm950232a
Patil, K.C., Aruna, S.T., and Ekambaram, S., Combustion synthesis, Curr. Opin. Solid State Mater. Sci., 1997, vol. 2, no. 2, pp. 158–165. doi 10.1016/S1359-0286(97)80060-5
Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng. 1998, vol. 24, no. C, pp. 79–226. doi 10.1016/S0065- 2377(08)60093-9
Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials, Mater. Lett., 1988, vol. 6, no. 11, pp. 427–432. doi 10.1016/0167-577X(88)90045-6
Kaliaguine, S., van Neste, A., Szabo, V, Gallot, J.E., Bassir, M., and Muzychuk, R., Perovskite-type oxides synthesized by reactive grinding: I. Preparation and characterization, Appl. Catal. A: Gen., 2001, vol. 209, no. 1, pp. 345–358. doi 10.1016/S0926- 860X(00)00779-1
Patil, K.C., Aruna, S.T., and Mimani, T., Combustion synthesis: An update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 6, pp. 507–512. doi 10.1016/S1359-0286(02)00123-7
Porcu, M., Orrù, R., Cincotti, A., and Cao, G., Selfpropagating reactions for environmental protection: Treatment of wastes containing asbestos, Ind. Eng. Chem. Res., 2005, vol. 44, no. 1, pp. 85–91. doi 10.1021/ie040058c
Merzhanov, A.G. and Borovinskaya, I.P., Historical retrospective of SHS: An autoreview, Int. J. Self- Propag. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 242–265. doi 10.3103/S1061386208040079
Specchia, S., Finocchio, E., Busca, G., and Specchia, V., Combustion Synthesis, in Handbook of Combustion, Lackner, M., Winter, F., and Agarwal, A.K., Eds., Weinheim: Wiley–VCH, 2010, pp. 439–472. doi 10.1002/9783527628148.hoc088
Specchia, S., Galletti, C., and Specchia, V., Solution combustion synthesis as intriguing technique to quickly produce performing catalysts for specific applications, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 59–67. doi 10.1016/S0167-2991(10)75008-4
Rosa, R., Veronesi, P., and Leonelli, C., A review on combustion synthesis intensification by means of microwave energy, Chem. Eng. Process. Process Intensif., 2013, vol. 71, pp. 2–18. doi 10.1016/j.cep. 2013.02.007
González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties, and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A: Gen., 2013, vol. 452, pp. 117–131. doi 10.1016/j.apcata.2012.11.024
Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, no. 101, pp. 58090–58100. doi 10.1039/C4RA10145F
Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T., Combustion synthesis in nanostructured reactive systems, Adv. Powder Technol., 2015, vol. 26, no. 3, pp. 954–976. doi 10.1016/j.apt.2015.03.013
Pawade, V.B., Swart, H.C., and Dhoble, S.J., Review of rare earth activated blue emission phosphors prepared by combustion synthesis, Renew. Sustain. Energy Rev., 2015, vol. 52, pp. 596–612. doi 10.1016/j.rser.2015.07.170
Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. doi 10.1021/acs.chemrev.6b00279
Rogachev, A.S., Vadchenko, S.G., and Shchukin, A.S., SHS reaction and explosive crystallization in thin films: Resemblance and distinction, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 44–48. doi 10.3103/S1061386217010095
Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., Whittaker, A.G., Drysdale, T.D., Kingman, S.W., and Gregory, D.H., Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing, Chem. Rev., 2014, vol. 114, no. 2, pp. 1170–1206. doi 10.1021/cr4002353
Merzhanov, A.G., Shkiro, V.M., and Borovinskaya, I.P., A method for synthesis of refractory inorganic compounds, USSR Inventor’s Certificate 255 221, 1967.
Grigoryan, H., Mukasyan, A., Rogachev, A., and Sytschev, A., International Conference on historical aspects of SHS in different countries dedicated to the 40th anniversary of SHS, Int. J. Self-Propag. High- Temp. Synth., 2007, vol. 16, no. 4, pp. 256–258. doi 10.3103/S1061386207040127
Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786. doi 10.1039/b401358c
Specchia, S., Conti, F., and Specchia, V., Kinetic studies on Pd/CexZr1–x O2 catalyst for methane combustion, Ind. Eng. Chem. Res., 2010, vol. 49, no. 21, pp. 11101–11111. doi 10.1021/ie100532x
Vita, A., Cristiano, G., Italiano, C., Specchia, S., Cipitì, F., and Specchia, V., Methane oxy-steam reforming reaction: Performances of Ru/γ-Al2O3 catalysts loaded on structured cordierite monoliths, Int. J. Hydrogen Energy, 2014, vol. 39, no. 32, pp. 18592–18603. doi 10.1016/j.ijhydene.2014.03.114
Ercolino, G., Stelmachowski, P., and Specchia, S., Catalytic performance of Pd/Co3O4 on SiC and ZrO2 open cell foams for process intensification of methane combustion in lean conditions, Ind. Eng. Chem. Res., 2017, vol. 56, no. 23, pp. 6625–6636. doi 10.1021/acs.iecr.7b01087
Ercolino, G., Karimi, S., Stelmachowski, P., and Specchia, S., Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4, Chem. Eng. J., 2017, vol. 326, pp. 339–349. doi 10.1016/j.cej.2017.05.149
Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Nickelreaction pathways, AIChE J., 2011, vol. 57, no. 8, pp. 2207–2214. doi 10.1002/aic.12416
Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys, AIChE J., 2011, vol. 57, no. 12, pp. 3473–3479. doi 10.1002/aic.12537
Specchia, S., Ahumada Irribarra, M.A., Palmisano, P., Saracco, G., and Specchia, V., Aging of premixed metal fiber burners for natural gas combustion catalyzed with Pa/LaMnO3 · 2ZrO2, Ind. Eng. Chem. Res., 2007, vol. 46, no. 21, pp. 6666–6673. doi 10.1021/ie061665y
Specchia, S., Finocchio, E., Busca, G., Saracco, G., and Specchia, V., Effect of S-compounds on Pd over LaMnO3 · 2ZrO2 and CeO2 · 2ZrO2 catalysts for CH4 combustion, Catal. Today, 2009, vol. 143, nos. 1–2, pp. 86–93. doi 10.1016/j.cattod.2008.10.035
Zavyalova, U., Girgsdies, F., Korup, O., Horn, R., and Schlögl, R., Microwave-assisted self-propagating combustion synthesis for uniform deposition of metal nanoparticles on ceramic monoliths, J. Phys. Chem. C, 2009, vol. 113, no. 40, pp. 17493–17501. doi 10.1021/jp905692g
Ercolino, G., Stelmachowski, P., Grzybek, G., Kotarba, A., and Specchia, S., Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane, Appl. Catal. B: Environ., 2017, vol. 206, pp. 712–725. doi 10.1016/j.apcatb.2017.01.055
Manukyan, K.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies, J. Phys. Chem. C, 2013, vol. 117, no. 46, pp. 24417–24427. doi 10.1021/jp408260m
Weidenhof, B., Reiser, M., Stöwe, K., Maier, W.F., Kim, M., Azurdia, J., Gulari, E., Seker, E., Barks, A., and Laine, R.M., High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts, J. Am. Chem. Soc., 2009, vol. 131, no. 26, pp. 9207–9219. doi 10.1021/ja809134s
Erri, P., Pranda, P., and Varma, A., Oxidizer-fuel interactions in aqueous combustion synthesis: I. Iron(III) nitrate model fuels, Ind. Eng. Chem. Res., 2004, vol. 43, no. 12, pp. 3092–3096. doi 10.1021/ie030822f
Li, F., Ran, J., Jaroniec, M., Qiao, S.Z., Liang, X.Y., and Ye, Z.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion, Nanoscale, 2015, vol. 7, no. 42, pp. 17590–17610. doi 10.1039/C5NR05299H
Bera, P. and Hegde, M.S., Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst, Catal. Lett., 2002, vol. 79, no. 1/4, pp. 75–81. doi 10.1023/A:1015352223861
Amjad, U.-E.-S., Vita, A., Galletti, C., Pino, L., and Specchia, S., Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts, Ind. Eng. Chem. Res., 2013, vol. 52, no. 44, pp. 15428–15436. doi 10.1021/ie400679h
Liotta, L.F., Di Carlo, G., Pantaleo, G., and Deganello, G., Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture, Appl. Catal. B: Environ. 2007, vol. 70, no. 1, pp. 314–322. doi 10.1016/j.apcatb.2005.12.023
Kumar, R., Zulfequar, M., Sharma, L., Singh, V.N., and Senguttuvan, T.D., Growth of nanocrystalline CaCu3Ti4O12 ceramic by the microwave flash combustion method: Structural and impedance spectroscopic studies, Cryst. Growth Des., 2015, vol. 15, no. 3, pp. 1374–1379. doi 10.1021/cg501771k
Morfin, F., Nguyen, T.-S., Rousset, J.-L., and Piccolo, L. Synergy between hydrogen and ceria in Ptcatalyzed CO oxidation: An investigation on Pt–CeO2 catalysts synthesized by solution combustion, Appl. Catal. B: Environ., 2016, vol. 197, pp. 2–13. doi 10.1016/j.apcatb.2016.01.056
Piumetti, M., Fino, D., and Russo, N., Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B: Environ., 2015, vol. 163, pp. 277–287. doi 10.1016/j.apcatb.2014.08.012
Ardit, M., Borcănescu, S., Cruciani, G., Dondi, M., Lazău, I., Păcurariu, C., and Zanelli, C., Ni–Ti codoped hibonite ceramic pigments by combustion synthesis: Crystal structure and optical properties, J. Am. Ceram. Soc., 2016, vol. 99, no. 5, pp. 1749–1760. doi 10.1111/jace.14128
Zavyalova, U., Scholz, P., and Ondruschka, B., Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane, Appl. Catal. A: Gen., 2007, vol. 323, pp. 226–233. doi 10.1016/j.apcata.2007.02.021
Zavyalova, U., Nigrovski, B., Pollok, K., Langenhorst, F., Müller, B., Scholz, P., and Ondruschka, B., Gel-combustion synthesis of nanocrystalline spinel catalysts for VOCs elimination, Appl. Catal. B: Environ., 2008, vol. 83, no. 3, pp. 221–228. doi 10.1016/j.apcatb.2008.02.015
Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V., Performance of Pt/CeO2 catalyst for propane oxidative steam reforming, Appl. Catal. A: Gen., 2006, vol. 306, pp. 68–77. doi 10.1016/j.apcata.2006.03.031
Barbato, P.S., Colussi, S., Di Benedetto, A., Landi, G., Lisi, L., Llorca, J., and Trovarelli, A., Origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction, J. Phys. Chem. C, 2016, vol. 120, no. 24, pp. 13039–13048. doi 10.1021/acs.jpcc.6b02433
Yilmaz, E., Sonmez, M.S., Derin, B., Sahin, F.C., and Yucel, O., Synthesis of Mn2O3 nanopowders with urea and citric acid by solution combustion route, in Proc. 146th Ann. TMS Meeting and Exhibition, 2017, pp. 39–46. doi 10.1007/978-3-319-51493-2_510.1007/978-3-319-51493-2_5
Marinšek, M., Zupan, K., and Maèek, J., Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis, J. Power Sources, 2002, vol. 106, no. 1, pp. 178–188. doi 10.1016/S0378-7753(01)01056-4
Kolb, G., Baier, T., Schürer, J., Tiemann, D., Ziogas, A., Specchia, S., Galletti, C., Germani, G., and Schuurman, Y., A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units: II. Development of water-gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor, Chem. Eng. J., 2008, vol. 138, nos. 1–3, pp. 474–489. doi 10.1016/j.cej.2007.06.037
Shi, L., Tao, K., Kawabata, T., Shimamura, T., Zhang, X.J., and Tsubaki, N., Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for Fischer–Tropsch synthesis, ACS Catal., 2011, vol. 1, pp. 1225–1233. doi 10.1021/cs200294d
Xanthopoulou, G. and Vekinis, G., Deep oxidation of methane using catalysts and carriers produced by selfpropagating high-temperature synthesis, Appl. Catal. A: Gen., 2000, vol. 199, no. 2, pp. 227–238. doi 10.1016/S0926-860X(99)00562-1
Anuradha, T., Ranganathan, S., Mimani, T., and Patil, K., Combustion synthesis of nanostructured barium titanate, Scr. Mater., 2001, vol. 44, nos. 8–9, pp. 2237–2241. doi 10.1016/S1359-6462(01)00755-2
Deshpande, K., Mukasyan, A., and Varma, A., Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties, Chem. Mater., 2004, vol. 16, no. 24, pp. 4896–4904. doi 10.1021/CM040061M
Manoharan, S.S., Swati Prasanna, S.J., Rao, M.L., and Sahu, R.K., Microwave-assisted synthesis of fine particle oxides employing wet redox mixtures, J. Am. Ceram. Soc., 2002, vol. 85, no. 10, pp. 2469–2471. doi 10.1111/j.1151-2916.2002.tb00482.x
Santos, A.C.S.F., Damyanova, S., Teixeira, G.N.R., Mattos, L.V., Noronha, F.B., Passos, F.B., and Bueno, J.M.C., The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane, Appl. Catal. A: Gen., 2005, vol. 290, no. 1, pp. 123–132. doi 10.1016/j.apcata.2005.05.015
Cross, A., Kumar, A., Wolf, E.E., and Mukasyan, A.S., Combustion synthesis of a nickel supported catalyst: Effect of metal distribution on the activity during ethanol decomposition, Ind. Eng. Chem. Res., 2012, vol. 51, no. 37, pp. 12004–12008. doi 10.1021/ie301478n
Deshpande, K., Mukasyan, A.S., and Varma, A., High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells, J. Power Sources, 2006, vol. 158, no. 1, pp. 60–68. doi 10.1016/j.jpowsour. 2005.09.025
Li, X., Xiao, Q., Liu, B., Lin, H., and Zhao, J., Onestep solution-combustion synthesis of complex spinel titanate flake particles with enhanced lithium-storage properties, J. Power Sources, 2015, vol. 273, pp. 128–135. doi 10.1016/j.jpowsour.2014.08.129
Roy, B., Martinez, U., Loganathan, K., Datye, A.K., and Leclerc, C.A., Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueousphase reforming of ethanol: I. Catalytic activity, Int. J. Hydrogen Energy, 2012, vol. 37, no. 10, pp. 8143–8153. doi 10.1016/j.ijhydene.2012.02.056
Roy, B., Artyushkova, K., Pham, H.N., Li, L., Datye, A.K., and Leclerc, C.A., Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: II. Characterization, Int. J. Hydrogen Energy, 2012, vol. 37, no. 24, pp. 18815–18826. doi 10.1016/j.ijhydene.2012.09.098
Bharathidasan, T., Mandalam, A., Balasubramanian, M., Dhandapani, P., Sathiyanarayanan, S., and Mayavan, S., Zinc oxide-containing porous boron–carbon–nitrogen sheets from glycine–nitrate combustion: Synthesis, self-cleaning, and sunlight-driven photocatalytic activity, ACS Appl. Mater. Interf., 2015, vol. 7, no. 33, pp. 18450–18459. doi 10.1021/acsami.5b04609
Saracco, G. and Specchia, V., Simultaneous removal of nitrogen oxides and fly-ash from coal-based powerplant flue gases, Appl. Therm. Eng., 1998, vol. 18, no. 11, pp. 1025–1035. doi 10.1016/S1359- 4311(98)00035-0
Granger, P. and Parvulescu, V.I., Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies, Chem. Rev., 2011, vol. 111, no. 5, pp. 3155–3207. doi 10.1021/cr100168g
Nguyen, T.-S., Morfin, F., Aouine, M., Bosselet, F., Rousset, J.L., and Piccolo, L., Trends in the CO oxidation and PROX performances of the platinumgroup metals supported on ceria, Catal. Today, 2015, vol. 253, pp. 106–114. doi 10.1016/j.cattod. 2014.12.038
Ugues, D., Specchia, S., and Saracco, G., Optimal microstructural design of a catalytic premixed FeCrAlloy fiber burner for methane combustion, Ind. Eng. Chem. Res., 2004, vol. 43, no. 9, pp. 1990–1998. doi 10.1021/ie034202q
du Plessis, J.P. and Woudberg, S., Pore-scale derivation of the Ergun equation to enhance its adaptability and generalization, Chem. Eng. Sci., 2008, vol. 63, no. 9, pp. 2576–2586. doi 10.1016/j.ces.2008.02.017
Tzimpilis, E., Moschoudis, N., Stoukides, M., and Bekiaroglou, P., Preparation, active phase composition, and Pd content of perovskite-type oxides, Appl. Catal. B: Environ., 2008, vol. 84, no. 3, pp. 607–615. doi 10.1016/j.apcatb.2008.05.016
Cristiani, C., Visconti, C.G., Finocchio, E., Gallo Stampino, P., and Forzatti, P., Towards the rationalization of the washcoating process conditions, Catal. Today, 2009, vol. 147S, pp. S24–S29. doi 10.1016/j.cattod.2009.07.031
Almeida, L.C., Echave, F.J., Sanz, O., Centeno, M.A., Odriozola, J.A., and Montes, M., Washcoating of metallic monoliths and microchannel reactors, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 25–33. doi 10.1016/S0167-2991(10)75004-7
Reay, D.A., Ramshaw, C., and Harvey, A.P., Process Intensification: Engineering for Efficiency, Sustainability, and Flexibility, Amsterdam: Elsevier–Butterworth–Heinemann, 2008.
Stankiewicz, A.I. and Moulijn, J.A., Process intensification: Transforming chemical engineering, Chem. Eng. Prog., 2000, vol. 96, pp. 22–34.
van Gerven, T. and Stankiewicz, A., Structure, energy, synergy, time-the fundamentals of process intensification, Ind. Eng. Chem. Res., 2009, vol. 48, no. 5, pp. 2465–2474. doi 10.1021/ie801501y
Avila, P., Montes, M., and Miró, E.E., Monolithic reactors for environmental applications: A review on preparation technologies, Chem. Eng. J., 2005, vol. 109, no. 1, pp. 11–36. doi 10.1016/j.cej.2005.02.025
Twigg, M.V. and Richardson, J.T., Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 4166–4177. doi 10.1021/ie061122o
Buciuman, F.C. and Kraushaar-Czarnetzki, B., Ceramic foam monoliths as catalyst carriers: I. Adjustment and description of the morphology, Ind. Eng. Chem. Res., 2003, vol. 42, no. 9, pp. 1863–1869. doi 10.1021/ie0204134
Huo, W.-L., Zhang, X.-Y., Chen, Y.-G., Lu, Y.-J., Liu, W.-T., Xi, X.-Q., Wang, Y.-L., Xu, J., and Yang, J.-L., Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 2016, vol. 99, no. 11, pp. 3512–3515. doi 10.1111/jace.14555
Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., and Tronconi, E., An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors, Chem. Eng. J., vol. 198–199, pp. 512–528. doi 10.1016/j.cej.2012.05.045
Richardson, J.T., Peng, Y., and Remue, D., Properties of ceramic foam catalyst supports: Pressure drop, Appl. Catal. A: Gen., 2000, vol. 204, no. 1, pp. 19–32. doi 10.1016/S0926-860X(00)00508-1
Richardson, J.T., Remue, D., and Hung, J.K., Properties of ceramic foam catalyst supports: Mass and heat transfer, Appl. Catal. A: Gen., vol. 250, no. 2, pp. 319–329. doi 10.1016/S0926-860X(03)00287-4
Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Luther, E.P., Mang, J.T., and Son, S.F., Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition, J. Am. Chem. Soc., 2006, vol. 128, no. 20, pp. 6589–6594. doi 10.1021/ja056550k
Specchia, S., Fuel processing activities at European level: A panoramic overview, Int. J. Hydrogen Energy, 2014, vol. 39, no. 21, pp. 17953–17968. doi 10.1016/j.ijhydene.2014.04.040
Xuan, J., Leung, M.K.H., Leung, D.Y.C., and Ni, M., A review of biomass-derived fuel processors for fuel cell systems, Renew. Sustain. Energy Rev., 2009, vol. 13, no. 6, pp. 1301–1313. doi 10.1016/j.rser.2008.09.027