Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control

S. Specchia1,2, G. Ercolino1, S. Karimi3, C. Italiano2, A. Vita2
1Department of Applied Science and Technology, Politecnico Di Torino, Torino, Italy
2Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Messina, Italy
3School of Chemistry, College of Science, University of Tehran, Tehran, Iran

Tóm tắt

Solution combustion synthesis (SCS) is a preparation technique that can be used to synthesize a variety of inorganic nanomaterials and structured catalysts. It is based on a self-propagating exothermic redox reaction between organic salts and a fuel mixed together in an aqueous solution, which results in the formation of nanocrystalline and highly pure solid nanomaterials. SCS can be considered as an attractive synthesis method for catalysts due to the simple nature of the synthetic route and short reaction times. The process is easily scaled up to any kind of application which makes it economically attractive. This mini-review provides a short overview on the synthesis of structured catalysts by SCS and their recent utilization for energy applications and pollution control.

Tài liệu tham khảo

Rogachev, A.S., Shugaev, V.A., Kachelmyer, C.R., and Varma, A., Mechanisms of structure formation during combustion synthesis of materials, Chem. Eng. Sci., 1994, vol. 49, no. 24, pp. 4949–4958. doi 10.1016/0009-2509(94)00389-0

Merzhanov, A.G., Fluid dynamics phenomena in the processes of self-propagating high-temperature synthesis, Combust. Sci. Technol., 1995, vol. 105, nos. 4–6, pp. 295–325. doi 10.1080/00102209508907756

Gillan, E.G. and Kaner, R.B., Synthesis of refractory ceramics via rapid metathesis reactions between solidstate precursors, Chem. Mater., 1996, vol. 8, no. 2, pp. 333–343. doi 10.1021/cm950232a

Patil, K.C., Aruna, S.T., and Ekambaram, S., Combustion synthesis, Curr. Opin. Solid State Mater. Sci., 1997, vol. 2, no. 2, pp. 158–165. doi 10.1016/S1359-0286(97)80060-5

Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng. 1998, vol. 24, no. C, pp. 79–226. doi 10.1016/S0065- 2377(08)60093-9

Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials, Mater. Lett., 1988, vol. 6, no. 11, pp. 427–432. doi 10.1016/0167-577X(88)90045-6

Kaliaguine, S., van Neste, A., Szabo, V, Gallot, J.E., Bassir, M., and Muzychuk, R., Perovskite-type oxides synthesized by reactive grinding: I. Preparation and characterization, Appl. Catal. A: Gen., 2001, vol. 209, no. 1, pp. 345–358. doi 10.1016/S0926- 860X(00)00779-1

Patil, K.C., Aruna, S.T., and Mimani, T., Combustion synthesis: An update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 6, pp. 507–512. doi 10.1016/S1359-0286(02)00123-7

Porcu, M., Orrù, R., Cincotti, A., and Cao, G., Selfpropagating reactions for environmental protection: Treatment of wastes containing asbestos, Ind. Eng. Chem. Res., 2005, vol. 44, no. 1, pp. 85–91. doi 10.1021/ie040058c

Merzhanov, A.G. and Borovinskaya, I.P., Historical retrospective of SHS: An autoreview, Int. J. Self- Propag. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 242–265. doi 10.3103/S1061386208040079

Specchia, S., Finocchio, E., Busca, G., and Specchia, V., Combustion Synthesis, in Handbook of Combustion, Lackner, M., Winter, F., and Agarwal, A.K., Eds., Weinheim: Wiley–VCH, 2010, pp. 439–472. doi 10.1002/9783527628148.hoc088

Specchia, S., Galletti, C., and Specchia, V., Solution combustion synthesis as intriguing technique to quickly produce performing catalysts for specific applications, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 59–67. doi 10.1016/S0167-2991(10)75008-4

Rosa, R., Veronesi, P., and Leonelli, C., A review on combustion synthesis intensification by means of microwave energy, Chem. Eng. Process. Process Intensif., 2013, vol. 71, pp. 2–18. doi 10.1016/j.cep. 2013.02.007

González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties, and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A: Gen., 2013, vol. 452, pp. 117–131. doi 10.1016/j.apcata.2012.11.024

Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, no. 101, pp. 58090–58100. doi 10.1039/C4RA10145F

Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T., Combustion synthesis in nanostructured reactive systems, Adv. Powder Technol., 2015, vol. 26, no. 3, pp. 954–976. doi 10.1016/j.apt.2015.03.013

Pawade, V.B., Swart, H.C., and Dhoble, S.J., Review of rare earth activated blue emission phosphors prepared by combustion synthesis, Renew. Sustain. Energy Rev., 2015, vol. 52, pp. 596–612. doi 10.1016/j.rser.2015.07.170

Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. doi 10.1021/acs.chemrev.6b00279

Rogachev, A.S., Vadchenko, S.G., and Shchukin, A.S., SHS reaction and explosive crystallization in thin films: Resemblance and distinction, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 44–48. doi 10.3103/S1061386217010095

Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., Whittaker, A.G., Drysdale, T.D., Kingman, S.W., and Gregory, D.H., Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing, Chem. Rev., 2014, vol. 114, no. 2, pp. 1170–1206. doi 10.1021/cr4002353

Merzhanov, A.G., Shkiro, V.M., and Borovinskaya, I.P., A method for synthesis of refractory inorganic compounds, USSR Inventor’s Certificate 255 221, 1967.

Grigoryan, H., Mukasyan, A., Rogachev, A., and Sytschev, A., International Conference on historical aspects of SHS in different countries dedicated to the 40th anniversary of SHS, Int. J. Self-Propag. High- Temp. Synth., 2007, vol. 16, no. 4, pp. 256–258. doi 10.3103/S1061386207040127

Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786. doi 10.1039/b401358c

Specchia, S., Conti, F., and Specchia, V., Kinetic studies on Pd/CexZr1–x O2 catalyst for methane combustion, Ind. Eng. Chem. Res., 2010, vol. 49, no. 21, pp. 11101–11111. doi 10.1021/ie100532x

Vita, A., Cristiano, G., Italiano, C., Specchia, S., Cipitì, F., and Specchia, V., Methane oxy-steam reforming reaction: Performances of Ru/γ-Al2O3 catalysts loaded on structured cordierite monoliths, Int. J. Hydrogen Energy, 2014, vol. 39, no. 32, pp. 18592–18603. doi 10.1016/j.ijhydene.2014.03.114

Ercolino, G., Stelmachowski, P., and Specchia, S., Catalytic performance of Pd/Co3O4 on SiC and ZrO2 open cell foams for process intensification of methane combustion in lean conditions, Ind. Eng. Chem. Res., 2017, vol. 56, no. 23, pp. 6625–6636. doi 10.1021/acs.iecr.7b01087

Ercolino, G., Karimi, S., Stelmachowski, P., and Specchia, S., Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4, Chem. Eng. J., 2017, vol. 326, pp. 339–349. doi 10.1016/j.cej.2017.05.149

Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Nickelreaction pathways, AIChE J., 2011, vol. 57, no. 8, pp. 2207–2214. doi 10.1002/aic.12416

Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys, AIChE J., 2011, vol. 57, no. 12, pp. 3473–3479. doi 10.1002/aic.12537

Specchia, S., Ahumada Irribarra, M.A., Palmisano, P., Saracco, G., and Specchia, V., Aging of premixed metal fiber burners for natural gas combustion catalyzed with Pa/LaMnO3 · 2ZrO2, Ind. Eng. Chem. Res., 2007, vol. 46, no. 21, pp. 6666–6673. doi 10.1021/ie061665y

Specchia, S., Finocchio, E., Busca, G., Saracco, G., and Specchia, V., Effect of S-compounds on Pd over LaMnO3 · 2ZrO2 and CeO2 · 2ZrO2 catalysts for CH4 combustion, Catal. Today, 2009, vol. 143, nos. 1–2, pp. 86–93. doi 10.1016/j.cattod.2008.10.035

Zavyalova, U., Girgsdies, F., Korup, O., Horn, R., and Schlögl, R., Microwave-assisted self-propagating combustion synthesis for uniform deposition of metal nanoparticles on ceramic monoliths, J. Phys. Chem. C, 2009, vol. 113, no. 40, pp. 17493–17501. doi 10.1021/jp905692g

Ercolino, G., Stelmachowski, P., Grzybek, G., Kotarba, A., and Specchia, S., Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane, Appl. Catal. B: Environ., 2017, vol. 206, pp. 712–725. doi 10.1016/j.apcatb.2017.01.055

Manukyan, K.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies, J. Phys. Chem. C, 2013, vol. 117, no. 46, pp. 24417–24427. doi 10.1021/jp408260m

Weidenhof, B., Reiser, M., Stöwe, K., Maier, W.F., Kim, M., Azurdia, J., Gulari, E., Seker, E., Barks, A., and Laine, R.M., High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts, J. Am. Chem. Soc., 2009, vol. 131, no. 26, pp. 9207–9219. doi 10.1021/ja809134s

Erri, P., Pranda, P., and Varma, A., Oxidizer-fuel interactions in aqueous combustion synthesis: I. Iron(III) nitrate model fuels, Ind. Eng. Chem. Res., 2004, vol. 43, no. 12, pp. 3092–3096. doi 10.1021/ie030822f

Li, F., Ran, J., Jaroniec, M., Qiao, S.Z., Liang, X.Y., and Ye, Z.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion, Nanoscale, 2015, vol. 7, no. 42, pp. 17590–17610. doi 10.1039/C5NR05299H

Bera, P. and Hegde, M.S., Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst, Catal. Lett., 2002, vol. 79, no. 1/4, pp. 75–81. doi 10.1023/A:1015352223861

Amjad, U.-E.-S., Vita, A., Galletti, C., Pino, L., and Specchia, S., Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts, Ind. Eng. Chem. Res., 2013, vol. 52, no. 44, pp. 15428–15436. doi 10.1021/ie400679h

Liotta, L.F., Di Carlo, G., Pantaleo, G., and Deganello, G., Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture, Appl. Catal. B: Environ. 2007, vol. 70, no. 1, pp. 314–322. doi 10.1016/j.apcatb.2005.12.023

Kumar, R., Zulfequar, M., Sharma, L., Singh, V.N., and Senguttuvan, T.D., Growth of nanocrystalline CaCu3Ti4O12 ceramic by the microwave flash combustion method: Structural and impedance spectroscopic studies, Cryst. Growth Des., 2015, vol. 15, no. 3, pp. 1374–1379. doi 10.1021/cg501771k

Morfin, F., Nguyen, T.-S., Rousset, J.-L., and Piccolo, L. Synergy between hydrogen and ceria in Ptcatalyzed CO oxidation: An investigation on Pt–CeO2 catalysts synthesized by solution combustion, Appl. Catal. B: Environ., 2016, vol. 197, pp. 2–13. doi 10.1016/j.apcatb.2016.01.056

Piumetti, M., Fino, D., and Russo, N., Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B: Environ., 2015, vol. 163, pp. 277–287. doi 10.1016/j.apcatb.2014.08.012

Ardit, M., Borcănescu, S., Cruciani, G., Dondi, M., Lazău, I., Păcurariu, C., and Zanelli, C., Ni–Ti codoped hibonite ceramic pigments by combustion synthesis: Crystal structure and optical properties, J. Am. Ceram. Soc., 2016, vol. 99, no. 5, pp. 1749–1760. doi 10.1111/jace.14128

Zavyalova, U., Scholz, P., and Ondruschka, B., Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane, Appl. Catal. A: Gen., 2007, vol. 323, pp. 226–233. doi 10.1016/j.apcata.2007.02.021

Zavyalova, U., Nigrovski, B., Pollok, K., Langenhorst, F., Müller, B., Scholz, P., and Ondruschka, B., Gel-combustion synthesis of nanocrystalline spinel catalysts for VOCs elimination, Appl. Catal. B: Environ., 2008, vol. 83, no. 3, pp. 221–228. doi 10.1016/j.apcatb.2008.02.015

Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V., Performance of Pt/CeO2 catalyst for propane oxidative steam reforming, Appl. Catal. A: Gen., 2006, vol. 306, pp. 68–77. doi 10.1016/j.apcata.2006.03.031

Barbato, P.S., Colussi, S., Di Benedetto, A., Landi, G., Lisi, L., Llorca, J., and Trovarelli, A., Origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction, J. Phys. Chem. C, 2016, vol. 120, no. 24, pp. 13039–13048. doi 10.1021/acs.jpcc.6b02433

Yilmaz, E., Sonmez, M.S., Derin, B., Sahin, F.C., and Yucel, O., Synthesis of Mn2O3 nanopowders with urea and citric acid by solution combustion route, in Proc. 146th Ann. TMS Meeting and Exhibition, 2017, pp. 39–46. doi 10.1007/978-3-319-51493-2_510.1007/978-3-319-51493-2_5

Marinšek, M., Zupan, K., and Maèek, J., Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis, J. Power Sources, 2002, vol. 106, no. 1, pp. 178–188. doi 10.1016/S0378-7753(01)01056-4

Kolb, G., Baier, T., Schürer, J., Tiemann, D., Ziogas, A., Specchia, S., Galletti, C., Germani, G., and Schuurman, Y., A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units: II. Development of water-gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor, Chem. Eng. J., 2008, vol. 138, nos. 1–3, pp. 474–489. doi 10.1016/j.cej.2007.06.037

Shi, L., Tao, K., Kawabata, T., Shimamura, T., Zhang, X.J., and Tsubaki, N., Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for Fischer–Tropsch synthesis, ACS Catal., 2011, vol. 1, pp. 1225–1233. doi 10.1021/cs200294d

Xanthopoulou, G. and Vekinis, G., Deep oxidation of methane using catalysts and carriers produced by selfpropagating high-temperature synthesis, Appl. Catal. A: Gen., 2000, vol. 199, no. 2, pp. 227–238. doi 10.1016/S0926-860X(99)00562-1

Anuradha, T., Ranganathan, S., Mimani, T., and Patil, K., Combustion synthesis of nanostructured barium titanate, Scr. Mater., 2001, vol. 44, nos. 8–9, pp. 2237–2241. doi 10.1016/S1359-6462(01)00755-2

Deshpande, K., Mukasyan, A., and Varma, A., Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties, Chem. Mater., 2004, vol. 16, no. 24, pp. 4896–4904. doi 10.1021/CM040061M

Manoharan, S.S., Swati Prasanna, S.J., Rao, M.L., and Sahu, R.K., Microwave-assisted synthesis of fine particle oxides employing wet redox mixtures, J. Am. Ceram. Soc., 2002, vol. 85, no. 10, pp. 2469–2471. doi 10.1111/j.1151-2916.2002.tb00482.x

Santos, A.C.S.F., Damyanova, S., Teixeira, G.N.R., Mattos, L.V., Noronha, F.B., Passos, F.B., and Bueno, J.M.C., The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane, Appl. Catal. A: Gen., 2005, vol. 290, no. 1, pp. 123–132. doi 10.1016/j.apcata.2005.05.015

Cross, A., Kumar, A., Wolf, E.E., and Mukasyan, A.S., Combustion synthesis of a nickel supported catalyst: Effect of metal distribution on the activity during ethanol decomposition, Ind. Eng. Chem. Res., 2012, vol. 51, no. 37, pp. 12004–12008. doi 10.1021/ie301478n

Deshpande, K., Mukasyan, A.S., and Varma, A., High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells, J. Power Sources, 2006, vol. 158, no. 1, pp. 60–68. doi 10.1016/j.jpowsour. 2005.09.025

Li, X., Xiao, Q., Liu, B., Lin, H., and Zhao, J., Onestep solution-combustion synthesis of complex spinel titanate flake particles with enhanced lithium-storage properties, J. Power Sources, 2015, vol. 273, pp. 128–135. doi 10.1016/j.jpowsour.2014.08.129

Roy, B., Martinez, U., Loganathan, K., Datye, A.K., and Leclerc, C.A., Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueousphase reforming of ethanol: I. Catalytic activity, Int. J. Hydrogen Energy, 2012, vol. 37, no. 10, pp. 8143–8153. doi 10.1016/j.ijhydene.2012.02.056

Roy, B., Artyushkova, K., Pham, H.N., Li, L., Datye, A.K., and Leclerc, C.A., Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: II. Characterization, Int. J. Hydrogen Energy, 2012, vol. 37, no. 24, pp. 18815–18826. doi 10.1016/j.ijhydene.2012.09.098

Bharathidasan, T., Mandalam, A., Balasubramanian, M., Dhandapani, P., Sathiyanarayanan, S., and Mayavan, S., Zinc oxide-containing porous boron–carbon–nitrogen sheets from glycine–nitrate combustion: Synthesis, self-cleaning, and sunlight-driven photocatalytic activity, ACS Appl. Mater. Interf., 2015, vol. 7, no. 33, pp. 18450–18459. doi 10.1021/acsami.5b04609

Saracco, G. and Specchia, V., Simultaneous removal of nitrogen oxides and fly-ash from coal-based powerplant flue gases, Appl. Therm. Eng., 1998, vol. 18, no. 11, pp. 1025–1035. doi 10.1016/S1359- 4311(98)00035-0

Granger, P. and Parvulescu, V.I., Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies, Chem. Rev., 2011, vol. 111, no. 5, pp. 3155–3207. doi 10.1021/cr100168g

Nguyen, T.-S., Morfin, F., Aouine, M., Bosselet, F., Rousset, J.L., and Piccolo, L., Trends in the CO oxidation and PROX performances of the platinumgroup metals supported on ceria, Catal. Today, 2015, vol. 253, pp. 106–114. doi 10.1016/j.cattod. 2014.12.038

Ugues, D., Specchia, S., and Saracco, G., Optimal microstructural design of a catalytic premixed FeCrAlloy fiber burner for methane combustion, Ind. Eng. Chem. Res., 2004, vol. 43, no. 9, pp. 1990–1998. doi 10.1021/ie034202q

du Plessis, J.P. and Woudberg, S., Pore-scale derivation of the Ergun equation to enhance its adaptability and generalization, Chem. Eng. Sci., 2008, vol. 63, no. 9, pp. 2576–2586. doi 10.1016/j.ces.2008.02.017

Tzimpilis, E., Moschoudis, N., Stoukides, M., and Bekiaroglou, P., Preparation, active phase composition, and Pd content of perovskite-type oxides, Appl. Catal. B: Environ., 2008, vol. 84, no. 3, pp. 607–615. doi 10.1016/j.apcatb.2008.05.016

Cristiani, C., Visconti, C.G., Finocchio, E., Gallo Stampino, P., and Forzatti, P., Towards the rationalization of the washcoating process conditions, Catal. Today, 2009, vol. 147S, pp. S24–S29. doi 10.1016/j.cattod.2009.07.031

Almeida, L.C., Echave, F.J., Sanz, O., Centeno, M.A., Odriozola, J.A., and Montes, M., Washcoating of metallic monoliths and microchannel reactors, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 25–33. doi 10.1016/S0167-2991(10)75004-7

IEA–WEO-2016. http://www.worldenergyoutlook. org/publications/weo-2016/. Accessed May 3, 2017.

The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php. Accessed May 3, 2017.

Reay, D.A., Ramshaw, C., and Harvey, A.P., Process Intensification: Engineering for Efficiency, Sustainability, and Flexibility, Amsterdam: Elsevier–Butterworth–Heinemann, 2008.

Stankiewicz, A.I. and Moulijn, J.A., Process intensification: Transforming chemical engineering, Chem. Eng. Prog., 2000, vol. 96, pp. 22–34.

van Gerven, T. and Stankiewicz, A., Structure, energy, synergy, time-the fundamentals of process intensification, Ind. Eng. Chem. Res., 2009, vol. 48, no. 5, pp. 2465–2474. doi 10.1021/ie801501y

Avila, P., Montes, M., and Miró, E.E., Monolithic reactors for environmental applications: A review on preparation technologies, Chem. Eng. J., 2005, vol. 109, no. 1, pp. 11–36. doi 10.1016/j.cej.2005.02.025

Twigg, M.V. and Richardson, J.T., Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 4166–4177. doi 10.1021/ie061122o

Buciuman, F.C. and Kraushaar-Czarnetzki, B., Ceramic foam monoliths as catalyst carriers: I. Adjustment and description of the morphology, Ind. Eng. Chem. Res., 2003, vol. 42, no. 9, pp. 1863–1869. doi 10.1021/ie0204134

Huo, W.-L., Zhang, X.-Y., Chen, Y.-G., Lu, Y.-J., Liu, W.-T., Xi, X.-Q., Wang, Y.-L., Xu, J., and Yang, J.-L., Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 2016, vol. 99, no. 11, pp. 3512–3515. doi 10.1111/jace.14555

Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., and Tronconi, E., An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors, Chem. Eng. J., vol. 198–199, pp. 512–528. doi 10.1016/j.cej.2012.05.045

Richardson, J.T., Peng, Y., and Remue, D., Properties of ceramic foam catalyst supports: Pressure drop, Appl. Catal. A: Gen., 2000, vol. 204, no. 1, pp. 19–32. doi 10.1016/S0926-860X(00)00508-1

Richardson, J.T., Remue, D., and Hung, J.K., Properties of ceramic foam catalyst supports: Mass and heat transfer, Appl. Catal. A: Gen., vol. 250, no. 2, pp. 319–329. doi 10.1016/S0926-860X(03)00287-4

Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Luther, E.P., Mang, J.T., and Son, S.F., Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition, J. Am. Chem. Soc., 2006, vol. 128, no. 20, pp. 6589–6594. doi 10.1021/ja056550k

Specchia, S., Fuel processing activities at European level: A panoramic overview, Int. J. Hydrogen Energy, 2014, vol. 39, no. 21, pp. 17953–17968. doi 10.1016/j.ijhydene.2014.04.040

Xuan, J., Leung, M.K.H., Leung, D.Y.C., and Ni, M., A review of biomass-derived fuel processors for fuel cell systems, Renew. Sustain. Energy Rev., 2009, vol. 13, no. 6, pp. 1301–1313. doi 10.1016/j.rser.2008.09.027