Novel approaches to solution-combustion synthesis of nanomaterials

A. S. Mukasyan1, P. Dinka1
1Department of Chemical and Biomolecular Engineering, Center for Molecularly Engineered Materials, University of Notre Dame, Notre Dame, USA

Tóm tắt

Solution-combustion is an attractive approach to synthesis of nanomaterials for a variety of applications, including catalysts, fuel cells, and biotechnology. In this paper, several novel methods based on the combustion of a reactive solution are presented. These methods include self-propagating sol-gel combustion and combustion of impregnated inert and active supports. It was demonstrated that, based on the fundamental understanding of the considered combustion processes, a variety of extremely high surface area materials could be synthesized. The controlling process parameters are defined and discussed. Examples of materials synthesized by the above methods are presented. For the first time, a continuous technology for production of nanopowders by using the solution combustion approach is demonstrated.

Tài liệu tham khảo

Gleiter, H., Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, vol. 48, p. 1. Hellmig, R.J. and Ferkel, H., Using Nanoscaled Powders as an Additive in Coarse-Grained Powder, J. Am. Ceram. Soc., 2001, vol. 84, p. 261. Menzler, N.H., Lavergnat, D., Tietz, F., et al., Materials Synthesis and Characterization of 8YSZ Nanomaterials for the Fabrication of Electrolyte Membranes in SOFCs, Ceram. Int., 2003, vol. 29, p. 619. Keane, M.A., Ceramics for Catalysis, J. Mater. Sci., 2003, vol. 38, p. 4661. Pena, M.A. and Fierro, J.L.G., Chemical Structures and Performance of Perovskite Oxides, Chem. Rev., 2001, vol. 101, p. 1981. Biddlecombe, G.B., Gunko, Y.K., Kelly, J.M., Pillai, S.C., Corey, J.M.D., Venkatesan, M., and Douvalis, A.P., Preparation of Magnetic Nanoparticles and their Assemblies Using a New Fe(II) Alkoxide Precursor, J. Mater. Chem., 2001, vol. 11, p. 2937. Balaz, P., Godocikova, E., Krilova, L., Lobotka, P., and Gock, E., Preparation of Nanocrystalline Materials by High-Energy Milling, Mater. Sci. Eng., 2004, vol. 386, p. 442. Chen, C., Riman, R.E., TenHuisen, K.S., and Brown, K., Mechanochemical-Hydrothermal Synthesis of Hydroxyapatite from Nonionic Surfactant Emulsion Precursors, J. Cryst. Growth, 2004, vol. 270, p. 615. Cheng, P., Li, W., Liu, H., Gu, M., and Shangguah, W., Influence of Zinc Ferrite Doping on the Optical Properties and Phase Transformation of Titania Powders Prepared by Sol-Gel Method, Mater. Sci. Eng., 2004, vol. 386, p. 43. Choi, J.H., Park, K.W., Kwon, B.K., and Sung, Y.E., Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFC’s, J. Electrochem. Soc., 2003, vol. 150, p. A973. Vie, D., Martinez, E., Sapina, F., Folgado, J., and Beltran, A., Freeze-Dried Precursor-Based Synthesis of Nanostructured Cobalt-Nickel Molybdates Co1 − x NixMoO4, Chem. Mater., 2004, vol. 16, p. 1697. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.G., and Stucky, G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 1998, vol. 279, p. 548. Merzhanov, A.G. and Borovinskaya, I.P., Self-Propagating High-Temperature Synthesis of Refractory Inorganic Compounds, Dokl. Chem., 1972, vol. 204, p. 429. Munir, Z.A. and Anselmi-Tamburini, U., Self-Propagating Exothermic Reactions: The Synthesis of High-Temperature Materials by Combustion, Mater. Sci. Rep., 1989, vol. 3, p. 277. Merzhanov, A.G., Solid Flames: Discovery, Concepts, and Horizons of Cognition, Combust. Sci. Tech., 1994, vol. 98, p. 307. Moore, J.J. and Feng, H.J., Combustion Synthesis of Advanced Materials, Prog. Mater. Sci., 1995, vol. 39, p. 243. Hlavacek, V. and Puszynski, J., Chemical Engineering Aspects of Advanced Materials, Ind. Eng. Chem. Res., 1996, vol. 35, p. 349. Merzhanov, A.G., Worldwide Evolution and the Present Status of SHS as a Branch of Modern R and D, Int. J. SHS, 1997, vol. 6, p. 119. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, p. 79. Mukasyan, A.S., Lau, C., and Varma, A., Influence of Gravity on Combustion Synthesis of Advanced Materials, AIAA J., 2005, vol. 43, p. 225. Merzhanov, A.G., Borovinskaya, I.P., and Sytschev, A.E., SHS of Nanopowders, in Lessons in Nanotechnology from Traditional and Advanced Ceramics, Baumard, J.-F., Ed., Faenza (Italy): Techna Group Srl., 2005, pp. 191–218. Kingsley, J.J., Suresh, K., and Patil, K.C., Combustion Synthesis of Fine-Particle Metal Aluminates, J. Mater. Sci., 1990, vol. 25, no. 2B, p. 1305. Chick, L.A., Liu, J., Stevenson, J.W., Armstrong, T.R., et al., Phase Transitions and Transient Liquid-Phase Sintering in Calcium-Substituted Lanthanum Chromite, J. Am. Ceram. Soc., 1997, vol. 80, p. 2109. Patil, K., Aruna, S., and Ekambaram, S., Combustion Synthesis, Curr. Opin. Sol. State Mater. Sci., 1997, vol. 2, p. 158. Mukasyan, A.S., Costello, C., Sherlock, K., Lafarga, D., and Varma, A., Perovskite Membranes by Aqueous Combustion Synthesis: Synthesis and Properties, Separ. Purif. Tech., 2001, vol. 25, p. 117. Patil, K., Aruna, S., and Mimani, T., Combustion Synthesis: An Update, Curr. Opin. Sol. State Mater. Sci., 2003, vol. 6, p. 507. Varma, A., Mukasyan, A.S., Deshpande, K., Pranda, P., and Erii, P., Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties, Mat. Res. Soc. Symp. Proc., 2003, vol. 800, p. 113. Deshpande, K., Mukasyan, A.S., and Varma, A., Direct Synthesis of Iron Oxide Nanopowders by Combustion Approach: Reaction Mechanism and Properties, Chem. Mater., 2004, vol. 16, no. 24, p. 4896. Pechini, M., Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent 3 330 697, 1967. Ravindranathanan, P. and Patil, K.C., A One-Step Process for the Preparation of γ-Fe2O3, J. Mater. Sci. Lett., 1986, vol. 5, p. 221. Xu, X.L., Guo, J.D., and Wang, Y.Z., A Novel Technique by the Citrate Pyrolysis for Preparation of Iron Oxide Nanoparticles, Mater. Sci. Eng. B, 2000, vol. 77, p. 207. Sivalingam, G., Priya, M.H., and Madras, G., Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2, Appl. Catal. B, 2004, vol. 51, no. 1, p. 67. Hwang, C.C., Wu, T.Y., Wan, J., and Tsai, J.S., Development of a Novel Combustion Synthesis Method for Synthesizing of Ceramic Oxide Powders, Mater. Sci. Eng. B, 2004, vol. 111, no. 1, p. 49. Bhaduri, S., Bhaduri, S.B., and Zhou, E., Auto Ignition Synthesis and Consolidation of Al2O3-ZrO2 Nano/Nano Composite Powders, J. Mater. Res., 1998, vol. 13, p. 156. Rodriguez, S., Munichandriah, N., and Shukla, A.K., Novel Solution-combustion Synthesis of LiCoO2 and Its Characterization as Cathode Material for Lithium-Ion Cells, J. Power Sources, 2001, vol. 102, p. 322. Julien, C., Letranchant, C., Lemal, M., Ziolkiewicz, S., and Castro-Garcia, S., Layered LiNi1 − y CoyO2 Compounds Synthesized by a Glycine-Assisted Combustion Method for Lithium Batteries, J. Mater. Sci., 2002, vol. 37, p. 2367. Peng, C., Hong, C., and Chen, S.-Y., Preparation and Characterization of YBa2Cu3O7 − x Superconductor by means of a Novel Method Combining Sol-Gel and Combustion Synthesis Techniques, J. Mater. Sci., 2004, vol. 39, no. 12, p. 4057. Jalota, S., Tas, A.C., and Bhaduri, S.B., Microwave-Assisted Synthesis of Calcium Phosphate Nanowhiskers, J. Mater. Res., 2004, vol. 19, p. 1876. Muthuraman, M., Dhas, A.A., and Patil, K., Combustion Synthesis of Oxide for Nuclear Waste Immobilization, Bull. Mater. Sci., 1994, vol. 17, no. 6, p. 977. Muthuraman, M. and Patil, K., Synthesis, Properties, Sintering, and Microstructure of Sphene, CaTiSiO5, Mater. Res. Bull., 1998, vol. 33, no. 4, p. 655. Aruna, S.T., Ghosh, S., and Patil, K.C., Combustion Synthesis and Properties of Ce1 − x PrxO2 − δ Red Ceramic Pigments, Int. J. Inorg. Mater., 2001, vol. 3, p. 387. Mukasyan, A., Epstein, P., and Dinka, P., Solution Combustion Synthesis of Nanomaterials, Proc. Combust. Inst., 2007, vol. 31, no. 2, p. 1789. Thiers, L., Mukasyan, A.S., and Varma, A., Thermal Explosion in Ni-Al System: Influence of Reaction Medium Microstructure, Comb. Flame, 2002, vol. 131, nos. 1–2, p. 198. Merzhanov, A.G. and Khaikin, B.I., Theory of Combustion Waves in Homogeneous Media, Prog. Energ. Combust. Sci., 1998, vol. 14, p. 1. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, p. 11 053. Twigg, M.V., Catalyst Handbook, Wolfe Publishing Ltd., 1989, 2nd ed. Alifanti, M., Blangenois, N., Florea, M., and Delmon, B., Supported Co-Based Perovskites as Catalysts for Total Oxidation of Methane, Appl. Catal. A, 2005, vol. 280, p. 255. Isupova, L.A., Alikina, G.M., Tsybulya, S.V., Salanov, A.N., Boldyreva, N.N., Rusina, E.S., Ovsyannikova, I.A., Rogov, V.A., Bunina R.V., and Sadykov, V.A., Honeycomb-Supported Perovskite Catalysts for High-Temperature Processes, Catal. Today, 2002, vol. 75, p. 305. Dinka, P. and Mukasyan, A., In Situ Preparation of the Supported Catalysts by Solution Combustion Synthesis, J. Phys. Chem., 2005, vol. 109, no. 46, p. 21 627. Dinka, P. and Mukasyan, A., Perovskite Catalysts for the Auto-Reforming of Sulfur Containing Fuels, J. Power Sources, 2007, vol. 167, pp. 472–481. Lan, A. and Mukasyan, A., Novel Catalysts for Direct Ethanol Fuel Cells, Eurasian Chem.-Tech. J., 2007 (in press). Lan, A. and Mukasyan, A., Perovskite-Based Catalysts for Direct Methanol Fuel Cells, J. Phys. Chem., 2007 (in review).