Historical perspective and contribution of US researchers into the field of self-propagating high-temperature synthesis (SHS)/combustion synthesis (CS): Personal reflections

J. W. McCauley1, J. A. Puszynski2
1Army Research Laboratory, Aberdeen Proving Grounds, USA
2South Dakota School of Mines and Technology, Rapid City, USA

Tài liệu tham khảo

Merzhanov, A.G., Shkiro, V.M., and Borovinskaya, I.P., A Method for Synthesizing Refractory Compounds, USSR Inventor’s Certificate no. 255221, 1967. Merzhanov, A.G. and Borovinskaya, I.P., Self-Propagating High-Temperature Synthesis of Refractory Inorganic Compounds, Dokl. Akad. Nauk SSSR, 1972, vol. 204, pp. 429–432. Merzhanov, A.G., SHS Process: Combustion Theory and Practice, Arch. Combust., 1981, vol. 1, pp. 23–48. Merzhanov, A.G., Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings, in Combustion and Plasma Synthesis of High Temperature Materials, Munir, Z.A. and Holt, J.B., Eds., VCH Publishers, 1990, pp. 1–53. Merzhanov, A.G., Theory and Practice of SHS: Worldwide State of the Art and the Newest Results, Int. J. SHS, 1993, vol. 2, no. 2, pp. 113–158. Borovinskaya, I.P. and Loryan, V.E., Self-Propagating High-Temperature Synthesis of Titanium Nitrides under High Nitrogen Pressures, Poroshk. Metall., 1978, vol. 11, no. 191, pp. 42–45. Borovinskaya, I.P., Combustion Processes and Chemical Synthesis, Arch. Combust., 1974, vol. 5, no. 2, pp. 145–161. Aldushin, A.P., Merzhanov, A.G., and Seplyarskii, B.S., Theory of Filtration Combustion in Metals, Fiz. Goreniya Vzryva, 1976, vol. 12, no. 3, pp. 323–332. Aldushin, A.P., Martem’yanova, T.M., Merzhanov, A.G., Khaikin, B.I., and Shkadinsky, K.G., Autovibrational Propagation of the Combustion Front in Heterogeneous Condensed Media, Fiz. Goreniya Vzryva, 1973, vol. 9, pp. 613–626. Aldushin, A.P., Seplyarskii, B.S., and Shkadinsky, K.G., Theory of Filtrational Combustion, Fiz. Goreniya. Vzryva, 1980, vol. 16, no. 1, pp. 36–45. Mukasyan, A.S., Martynenko, V.M., Merzhanov, A.G., Borovinskaya, I.P., and Blinar, M.Y., Mechanism and Principles of Silicon Combustion in Nitrogen, Fiz. Goreniya Vzryva, 1986, vol. 22, no. 5, pp. 43–49. Munir, Z.A. and Anselmi-Tamburini, U., Self-Propagating Exothermic Reactions: The Synthesis of High Temperature Materials by Combustion, Mater. Sci. Rep., 1989, vol. 3, pp. 277–365. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–225. Merzhanov, A.G., Condensed-Phase Combustion, Russian Academy of Science, 2000. Frankhouser, W.L., Brendley, K.W., Kieszek, M.C., and Sullivan, S.T., Gasless Combustion Synthesis of Refractory Compounds, Noyes Publications, 1985. McCauley, J.W., A Historical and Technical Perspective on SHS, Ceram. Eng. Sci. Proc., 1990, vol. 119, pp. 1137–1181. Puszynski, J.A., Kinetics and Thermodynamics of SHS Reactions, Int. J. SHS, 2001, vol. 10, no. 3, pp. 265–293. Puszynski, J.A. and Hlavacek, V., Synthesis and Processing of Ceramic Materials, Ind. Eng. Chem. Res., 1996, vol. 35, pp. 349–377. Hlavacek, V., Combustion Synthesis of Inorganic Materials (SHS): History and Recent Development, Am. Ceram. Soc. Bull., 1990, vol. 69, no. 3, pp. 240–243. Walton, J.D. and Poulos, N.E., Cermets for Thermite Reactions, J. Am. Ceram. Soc., 1959, vol. 42, no. 1, pp. 40–49. White, W.E. and Bushley, A.H., Aluminum Phosphide, in Inorganic Synthesis, New York: McGraw-Hill, 1953, vol. IV, p. 23. Titterington, R., and Simpson, A.G., The Production and Fabrication of Tantalum Powder, in Symposium on Powder Metallurgy, Special Report no. 58, London (UK): The Iron and Steel Institute, 1956, pp. 11–18. Huffadine, J.B., The Fabrication and Properties of Molybdenum Disilicide and Molybdenum Disilicide-Alumina, in Special Ceramics, Popper, P., Ed., New York: Academic Press, 1960, p. 220. Krapf, S., Thermal Reaction Process, Ber. Dtsch. Keram. Ges., 1954, vol. 31, no. 1, p. 18. Stringer, R.K. and Williams, L.S., Reaction Pressing: A New Fabrication Concept for Intermetallic and Metal-Metalloid Compounds, in Special Ceramics 4, British Ceramic Research Association, New York: Academic Press, 1967, p. 37. McKenna, P.M., Process for Preparing Tungsten Monocarbide, US Patent 3379503, 1968. Hardt, A.P., and Phung, P.V., Propagation of Gasless Reactions in Solids: Analytical Study of Exothermic Intermetallic Reaction Rates, Combust. Flame, 1973, vol. 21, pp. 77–89. McCauley, J.W., Corbin, N.D., Resetar, T.M., and Wong, P., Simultaneous Preparation and Self-Sintering of Materials in the System Ti-B-C, Ceram. Eng. Sci. Proc., 1982, vol. 3, nos. 9, 10, pp. 538–540. McCauley, J.W., Corbin, N.D., Rochester, N.E., DeMarco, J.J., Schioler, L., and Wong, P., Key Physical Characteristics for Predicting Zr Burning Characteristics, Proc. 29th Power Source Symp., 1981, pp. 19–23. Corbin, N.D. and McCauley, J.W., Self-Propagating High Temperature Synthesis (SHS): Current Status and Future Prospects, MTL MS 86-1, Watertown, MA, May 1986. Corbin, N.D., Resetar, T.M., McCauley, J.W., and Moon, K.A., Energy-less Manufacturing of Advanced Ceramics by SHS, Proc. 1984 Army Sci. Conf., West Point, NY, June 1984, p. 11. Gabriel, K.A., Lin, S.S., McCauley, J.W., Alexander, J.R., Resetar, T.M., and Lowder, L.J., Synthesis and Characterization of Nickel-Doped and Aluminum-Doped Titanium Carbide, in Materials Processing by Self-Propagating High Temperature Synthesis (SHS), MTL-SP-87-3, 1987, pp. 313–338. Resetar, T.M., and McCauley, J.W., Physical and Chemical Characterization of Soviet-Produced SHS Powder, in Materials Processing by Self-Propagating High Temperature Synthesis (SHS), MTL-SP-87-3, 1987, pp. 339–358. Materials Processing by Self-propagating High Temperature Synthesis, DARPA/Army SHS Symp. Proc. (FL, Daytona Beach, 1985), Gabriel, K.A., Wax, S., and McCauley, J.W., Eds., MTL-SP-87-3, Watertown, MA: U.S. Army Materials Technology Laboratory, 1987, p. 509. McCauley, J.W., Gabriel, K.A., and Resetar, SHS Processing as Reaction Sintering, Ceram. Bull., 1986, vol. 65, p. 531. Holt, J.B. and Kingman, D.D., Emergent Process Methods for Ceramic Science, Proc. Univ. Conf. on Ceramic Sci., North Carolina State Univ., 1982. Crider, J.F., Self-Propagating High Temperature Synthesis—A Soviet Method for Producing Ceramic Materials, Ceram. Eng. Sci. Proc., 1982, vol. 3, nos. 9, 10, pp. 519–528. Sivashinsky, G.I. and Matkowsky, B.J., Propagation of Pulsating Reaction Front in Solid Fuel Combustion, SIAM J. Appl. Math., 1978, vol. 35, pp. 465–478. Margolis, S.B., Kaper, H.G., Leaf, G.K., and Matkowsky, B.J., Bifurcation of Pulsating and Spinning Reaction Fronts in Condensed Two-Phase Combustion, Combust. Sci. Technol., 1985, vol. 43, pp. 127–165. Bayliss, A., and Matkowsky, B.J., Two Routes to Chaos in Condensed Phase Combustion, SIAM J. Appl. Math., 1990, vol. 50, pp. 437–459. Booty, M.R. and Matkowsky, B.J., Modes of Burning in Filtration Combustion, Eur. J. Appl. Math., 1991, vol. 2, pp. 17–41. Booty, M.R. and Matkowsky, B.J., On the Stability of Counter Flow Combustion, Combust. Sci. Technol., 1991, vol. 80, pp. 231–264. Matkowsky, B.J., and Volpert, V.A., Coupled Nonlocal Complex Ginzburg-Landau Equations in Gasless Combustion, Physica, Ser. D, 1992, vol. 54, pp. 203–219. Shkadinsky, K.G., Shkadinskaya, G.V., Matkowsky, B.J., and Volpert, V.A., Combustion Synthesis of a Porous Layer, Combust. Sci. Technol., 1992, vol. 88, pp. 247–270. Shkadinsky, K.G., Shkadinskaya, G.V., Matkowsky, B.J., and Volpert, V.A., Combustion of Porous Samples with Deformation of High Temperature Products, Int. J. SHS, 1992, vol. 1, no. 3, pp. 371–391. Shkadinsky, K.G., Shkadinskaya, G.V., Matkowsky, B.J., and Volpert, V.A., Two-Front Traveling Waves in Filtration Combustion, SIAM J. Appl. Math., 1993, vol. 53, no. 1, pp. 128–140. Matkowsky, B.J. and Volpert, V.A., Spiral Gasless Condensed Phase Combustion, SIAM J. Appl. Math., 1994, vol. 54, no. 1, pp. 132–146. Aldushin, A.P., Matkowsky, B.J., and Volpert, V.A., Interaction of Gasless and Filtration Combustion, Combust. Sci. Technol., 1994, vol. 99, nos. 1–3, pp. 75–103. Aldushin, A.P., Matkowsky, B.J., Shkadinsky, K.G., Shkadinskaya, G.V., and Volpert, V.A., Combustion of Porous Samples with Melting and Flow of Reactants, Combust. Sci. Technol., 1994, vol. 99, nos. 4–6, pp. 313–343. Aldushin, A.P., Matkowsky, B.J., and Volpert, V.A., Enhancement of Gasless Combustion Synthesis by Counterflow Gas Filtration, Combust. Sci. Technol., 1995, vol. 103, nos. 1–6, pp. 1–20. Aldushin, A.P., Matkowsky, B.J., and Volpert, V.A., Stoichiometric Combustion Waves and Their Stability, Combust. Flame, 1995, vol. 101, nos. 1, 2, pp. 15–25. Raymond, C.S., Bayllis, A., Matkowsky, B.J., and Volpert, V.A., Transitions to Chaos in Condensed Phase Combustion with Reactant Melting, Int J. SHS, 2001, vol. 10, no. 2, pp. 133–150. Volpert, Vit.A., and Volpert, Vl.A., Propagation of Frontal Polymerization-Crystallization Waves, Eur. J. Appl. Math., 1994, vol. 5, pp. 201–215. Goldfelder, P.M., Volpert, V.A., Ilyashenko, V.M., Khan, A., Pojman, J.A., and Solovyov, S.E., Mathematical Modeling of Free Radical Polymerization Fronts, J. Phys. Chem., Ser. B, 1997, vol. 101, pp. 3474–3482. Raymond, C.S., Shkadinsky, K.G., and Volpert, V.A., Gravitational Effects in Liquid Flame Thermite Systems, Comb. Sci. Technol., 1998, vol. 131, nos. 1–6, pp. 107–129. Goldfelder, P.M., and Volpert, V.A., Nonadiabatic Frontal Polymerization, J. Eng. Mathem., 1998, vol. 34, no. 3, pp. 301–318. Spade, C.A. and Volpert, V.A., Mathematical Modeling of Interfacial Gel Polymerization, Math. Computer Modeling, 1999, vol. 30, pp. 67–73. Schult, D.A., and Volpert, V.A., Linear Stability Analysis of Thermal Free Radical Polymerization Waves, Int. J. SHS, 1999, vol. 8, no. 4, pp. 417–440. Pojman, J.A., Masere, J., Petretto, E., Rustici, M., Huh, D.-S., Kim, M.S., and Volpert, V.A., The Effect of Reactor Geometry on Frontal Polymerization Spin Modes, Chaos, 2002, vol. 12, no. 1, pp. 56–65. Perry, M.F. and Volpert, V.A., Linear Stability Analysis of Two Monomer Systems of Frontal Polymerization, Chem. Eng. Sci., 2004, vol. 59, pp. 3451–3460. Devadoss, D.E., Pojman, J.A., and Volpert, V.A., Mathematical Modeling of Thiolene Frontal Polymerization, Chem. Eng. Sci., 2006, vol. 61, pp. 1261–1275. Comissiong, D.M.G., Gross, L.K., and Volpert, V.A., Frontal Polymerization in the Presence of an Inert Material, J. Eng. Math., 2006, vol. 54, pp. 389–402. Comissiong, D.M.G., Gross, L.K., and Volpert, V.A., The Enhancement of Weakly Exothermic Polymerization Fronts, J. Eng. Math., 2007, vol. 57, pp. 423–435. Puszynski, J.A., Degreve, J., Kumar, S., and Hlavacek, V., Propagation of Reaction Fronts in Exothermic Heterogeneous Non-Catalytic Systems Solid-Solid and Solid-Gas, Lect. Appl. Math., 1986, vol. 24, p. 27. Puszynski, J.A. and Hlavacek, V., Front Instability and Fingering Effects in Noncatalytic Exothermic Reactions, Jpn. Chem. Eng. Symp. Ser., 1986, vol. 4, p. 62. Degreve, J., Dimitriou, P., Puszynski, J.A., Hlavacek, V., Valone, S., and Behrens, R., Numerical Resolution of Front Phenomena by Regridding Techniques, ACS Symp. Ser., 1987, vol. 353, p. 376. Puszynski, J.A., Degreve, J., and Hlavacek, V., Modeling of the Exothermic Solid-Solid Noncatalytic Reactions, Ind. Eng. Chem. Res., 1987, vol. 26, p. 1424. Degreve, J., Dimitriou, P., Puszynski, J.A., Hlavacek, V., Valone, S., and Behrens R., Use of 2D Adaptive Mesh in Simulation of Combustion Front Phenomena, Comput. Chem. Eng., 1987, vol. 11, pp. 749–755. Degreve, J., Dimitriou, P., Puszynski, J.A., Hlavacek, V., Modeling of Strongly Exothermic Reactions on a Supercomputer, Chem. Eng. Comm., 1987, vol. 58, pp. 105–118. Puszynski, J.A., Kumar, S., Dimitriou, P., and Hlavacek, V., A Numerical and Experimental Study of Reaction Front Propagation in Condensed Phase Systems, Z. Naturforsch., Ser. A, 1988, vol. 43, pp. 1017–1025. Dandekar, H.W., Agrafiotis, C., Puszynski, J.A., and Hlavacek, V., Modeling and Analysis of Filtration Combustion for Synthesis of Transition Metal Nitrides, Chem. Eng. Sci., 1990, vol. 45, p. 2499. Dandekar, H.W., Puszynski, J.A., and Hlavacek, V., A Numerical Study of the Combustion Synthesis of Transition Metal Nitrides, AIChE J., 1990, vol. 36, p. 1651. Dandekar, H., Puszynski, J.A., Degreve, J., and Hlavacek, V., Reaction Front Propagation Characteristics in Non-Catalytic Exothermic Gas-Solid Systems, Chem. Eng. Commun., 1990, vol. 92, p. 199. Dimitriou, P., Puszynski, J.A., and Hlavacek, V., On the Dynamic Equations Describing Gasless Combustion, Combust. Sci. Technol., 1989, vol. 68, pp. 101–111. Kumar, S., Puszynski, J.A., and Hlavacek, V., Combustion Characteristics of Solid-Solid Systems: Experiment and Modeling, in Combustion and Plasma Synthesis of High Temperature Materials, VCH Publishers, 1990, pp. 273–280. Dandekar, H., Puszynski, J.A., and Hlavacek, V., Modeling of Transition Metal Nitridation in Combustion Regime, Materials Sci. Monographs, Ser. B, vol. 66, 1991, p. 1207. Makino, A. and Law, C.K., Heterogeneous Flame Propagation in the Self-Propagating High-Temperature Synthesis (SHS) Process: Theory and Experimental Comparisons, Twenty-Fourth Symposium (International) on Combustion, Pittsburgh: The Combustion Institute, 1992, pp. 1883–1891. Makino, A. and Law, C.K., SHS Combustion Characteristics of Several Ceramics and Intermetallic Compounds, J. Am. Ceram. Soc., 1994, vol. 77, pp. 778–786. Makino, A. and Law, C.K., Burning Velocity of the Heterogeneous Flame Propagation in the SHS Process Expressed in Explicit Form, Combust. Flame, 1995, vol. 101, pp. 551–555. Makino, A. and Law, C.K., Bimodal Particle Dispersion in the Nonadiabatic Heterogeneous SHS Flame Propagation, Combust. Sci. Technol., 1995, vol. 106, pp. 193–201. Makino, A. and Law, C.K., Analytical Extinction Criterion for the Non-Adiabatic Heterogeneous SHS Flame Propagation, Int. J. SHS, 1995, vol. 4, no. 1, pp. 5–34. Makino, A. and Law, C.K., Self-Propagating High-Temperature Synthesis Flammable Range and Dominant Parameters for Synthesizing Several Ceramics and Intermetallic Compounds under Heat Loss Conditions, J. Am. Ceram. Soc., 1996, vol. 79, pp. 3097–3102. Makino, A. and Law, C.K., Pulsating Instability in the Nonadiabatic Heterogeneous SHS Flame: Theory and Experimental Comparisons, Twenty-Sixth Symposium (International) on Combustion, Pittsburgh: The Combustion Institute, 1996, pp. 1867–1874. Makino, A. and Law, C.K., On the Transition Boundary from Steady to Pulsating Combustion in SHS Flame, Twenty-Seventh Symposium (International) on Combustion, Pittsburgh: The Combustion Institute, 1998, pp. 2469–2476. Makino, A. and Law, C.K., Transient Radiative Initiation of the Heterogeneous Flame in SHS: Theory and Experimental Comparisons, Proc. Combust. Inst., 2000, vol. 28, pp. 1439–1446. Makino, A. and Law, C.K., On the Correspondence between the Homogeneous and Heterogeneous Theories of SHS, Combust. Flame, 2001, vol. 124, pp. 268–274. Makino, A. and Law, C.K., Extinction Thickness in the SHS Flame Propagation in Two-Layered Composite Medium, Proc. Combust. Inst., 2002, vol. 29, pp. 1093–1100. He, C. and Stangle, G.C., A Micromechanistic Model of the Combustion Synthesis Process: Mechanism of Ignition, J. Mater. Res., 1998, vol. 13, pp. 146–155. Kanury, A.M., Kinetic Model for Metal and Nonmetal Reactions, Metall. Trans., Ser. A, 1992, vol. pp. 2349–2356. Bhattacharya, A.K., Temperature-Enthalpy Approach to the Modeling of Self-Propagating Combustion Synthesis of Materials, J. Mater. Sci., 1992, vol. 27, pp. 3050–3061. Varma, A., Cao, G., and Morbidelli, M., Self-Propagating Solid-Solid Non-Catalytic Reactions in Finite Pellets, AIChE J., 1990, vol. 36, no. 7, pp. 1032–1038. Munir, Z.A. and Holt, J.B., The Combustion Synthesis of Refractory Nitrides, Part 1: Theoretical Analysis, J. Mater. Sci., 1987, vol. 22, pp. 710–714. Munir, Z.A., Electrically Stimulated SHS, Int. J. SHS, 1997, vol. 6, no. 20, pp. 165–186. Feng, A. and Munir, Z.A., Field-Assisted Self-Propagating Synthesis of Beta-SiC, J. Appl. Phys., 1994, vol. 7, no. 3, pp. 1927–1928. Kawase, K. and Munir, Z.A., Field-Activated Self-Propagating High-Temperature Synthesis of Iron Aluminides, Int. J. SHS, 1998, vol. 7, no. 1, pp. 95–102. Gedevanishvili, S. and Munir, Z.A., The Influence of Electric Field on the Mechanism of Combustion Synthesis of Tungsten Silicides, J. Mater. Res., 1995, vol. 10, pp. 2642–2647. Anselmi-Tamurini, U., Maglia, F., Spinolo, G., and Munir, Z.A., Nickel/Yttria-Stabilized Zirconia Cermets from Combustion Synthesis: Effect of Process Parameters on Product Microstructure, J. Am. Ceram. Soc., 1998, vol. 81, pp. 1765–1772. Gedevanishvili, S. and Munir, Z.A., The Synthesis Of Tib2-Tial3 Composites by Field-Activated Combustion, Mater. Sci. Eng., Ser. A., 1998, vol. 246, pp. 81–85. Shon, I.J. and Munir, Z.A., Synthesis of TiC and TiC-Cu Composites and TiC-Cu Functionally Graded Materials by Electothermal Combustion, J. Am. Ceram. Soc., 1998, vol. 81, pp. 3243–3248. Feng, A., Graeve, O.A., and Munir, Z.A., Modeling Solution for Electric Field-Activated Combustion Synthesis, Comput. Mater. Sci., 1998, vol. 12, pp. 137–155. Feng, A., Orling, T., and Munir, Z.A., Field-Activated Pressure-Assisted Combustion Synthesis of Polycrystalline Ti3SiC2, J. Mater. Res., 1999, vol. 14, pp. 925–939. Orru, R., Cao, G., and Munir, Z.A., Field-Activated Combustion Synthesis of Titanium Aluminides, Metall. Mater. Trans., Ser. A, 1999, vol. 30, pp. 1101–1108. Carillo-Heian, E.M., Graeve, O.A., Feng, A., Faghih, J.A., and Munir, Z.A., Modeling Studies of the Effect of Thermal and Electrical Conductivities and Relative Density on Field-Activated Self-Propagating Combustion Synthesis, J. Mater. Res., 1999, vol. 14, pp. 1949–1958. Dunmead, S.D., Munir, Z.A., and Holt, J.B., Temperature Profile Analysis in Combustion Synthesis: Theory and Background, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 180–188. Wang, L.L. and Munir, Z.A., Kinetic Analysis of the Combustion Synthesis of Molybdenum and Titanium Silicides, Metall. Trans., Ser. B, 1995, vol. 26, pp. 595–601. Lis, J., Majorowski, S., Puszynski, J.A., and Hlavacek, V., Sintering Studies of SIALONs Synthesized by SHS, Proc. Electrochem. Soc.—High Temperature Materials Chemistry, 1990, p. 135. Agrafiotis, C., Lis, J., Puszynski, J.A., and Hlavacek, V., Combustion Synthesis of Si3N4-SiC Composites, J. Am. Ceram. Soc., 1990, vol. 73, no. 11, p. 3514. Puszynski, J.A., Majorowski, S., Hlavacek, V., and Zdaniewski, W., Magnesiothermic Synthesis of Ultrafine Titanium Diboride, its Reactivity and Retention of Impurities in Consolidated Compacts, Materials Sci. Monographs, Ser. B, vol. 66, 1991, p. 1185. Agrafiotis, C., Puszynski, J.A., and Hlavacek, V., Kinetics of Tantalum and Titanium Nitridation in the Combustion Regime, Combust. Sci. Technol., 1991, vol. 76, p. 187. Lis, J., Majorowski, S., Puszynski, J.A., and Hlavacek, V., Densification of Combustion Synthesized Silicon Nitride, Ceram. Bull., 1991, vol. 70, no. 2, p. 244. Agrafiotis, C.C., Puszynski, J.A., and Hlavacek, V., The Effect of Metal Particle Morphology on the Combustion of Refractory Metals in Nitrogen, J. Am. Ceram. Soc., 1991, vol. 74, p. 2912. Agrafiotis, C.C., Hlavacek, V., and Puszynski, J.A., Direct Synthesis of Composites and Solid Solutions by Combustion Reactions, Combust. Sci. Technol., 1992, vol. 88, p. 187. Lis, J., Majorowski, S., Puszynski, J.A., and Hlavacek, V., Dense β-and α/β-Sialon Materials by Pressureless Sintering of Combustion Synthesized Powders, Ceram. Bull., 1991, vol. 70, no. 10, p. 1658. Lis, J., Majorowski, S., Hlavacek, V., and Puszynski, J.A., Combustion Synthesis and Densification of TiB2-TiC Composite Powders, Int. J. SHS, 1995, vol. 4, no. 3, pp. 275–285. Majorowski, S., Hlavacek, V., and Puszynski, J.A., Ceramic Armor Materials Derived from Combustion Synthesized Powders, Proc. Int. Symp. on Advanced Ceramics and Tribological Applications (Vancouver, BC), The Metallurgical Soc. of CIM, 1995, pp. 581–588. Hlavacek, V. and Puszynski, J.A., Combustion Synthesis of Transition Metal Nitrides, in The Chemistry of Transition Metal Carbides and Nitrides, Glasgow: Blackie Academic and Professional, 1996, pp. 233–251. Puszynski, J.A., Majorowski, S., and Hlavacek, V., Densification of Aluminum Nitride-Based Ceramic Materials Synthesized by Combustion of Aluminum in Air, Chem. Eng. Commun., 1996, vols. 152–153, pp. 75–85. Puszynski, J.A., Thermochemistry and Kinetics, in Carbide, Nitride, and Boride Materials Synthesis and Processing, Weimer, A.W., Ed., London: Chapman and Hall, 1997, pp. 183–228. Puszynski, J.A. and Miao, S., Chemically-Assisted Combustion Synthesis of Silicon Carbide from Elemental Powders, in Innovative Processes/Syntheses: Ceramics, Glasses, Composites II, Singh, J.P., Ed., Westerville, OH: American Ceramic Soc., 1998, pp. 13–21. Puszynski, J.A. and Miao, S., Kinetic Study of Synthesis of SiC Powders and Whiskers in the Presence of KClO3 and Teflon, Int. J. SHS, 1999, vol. 8, no. 3, pp. 265–275. Puszynski, J.A., Miao, S., Stefansson, B., and Jagarlamudi, S., In Situ Densification of Combustion Synthesized Coatings, AIChE J., Ser. A, 1997, vol. 43, no. 11, pp. 2751–2759. Liebig, B. and Puszynski, J.A., High Pressure Synthesis of Silicon Nitride-Based Materials with Controlled Morphology and Phase Composition, Int. J. SHS, 1998, vol. 7, no. 1, pp. 34–41. Liebig, B. and Puszynski, J.A., Effect of Combustion Conditions on Synthesis and Sinterability of Silicon Nitride-Based Powders, Ceram. Trans., 2000, vol. 115, pp. 71–83. Puszynski, J.A., Dargar, S.R., and Liebig, B.E., Combustion Synthesis of Ceramic Composites and Solid Solutions from Nanoreactants, Ceram. Trans., 2004, vol. 166, pp. 11–21. Puszynski, J.A., Recent Advances in Synthesis and Densification of Nanomaterials in Self-Propagating High-Temperature Regime, Adv. Sci. Technol., 2006, vol. 45, pp. 994–1003. Dargar, S., Groven, L.J., Swiatkiewicz, J.J., and Puszynski, J.A., In-Situ Densification of SHS Composities from Nanoreactants, Int. J. SHS, 2007, vol. 16, no. 3, p. 125. Viljoen, H.J. and Lauderback, L.L., Solitons and Nonequilibrium Reactions in Solid Phases, Int. J. SHS, 2000, vol. 9, no. 4, pp. 373–386. Viljoen, H.J. and Hlavacek, V., Solid-Solid Reactions with Mechanical Coupling, Chem. Eng. Sci., 1999, vol. 54, pp. 2985–2990. Viljoen, H.J. and Gordopolov, A., A Study in Mechanochemistry: Pressure-Induced Reactions, Nonequilibrium Phenomena, Int. J. SHS, 2005, vol. 14, no. 3, pp. 387–197. Gordopolov, A., Dzenis, O., and Viljoen, H.J., Compression of Powders in Bridgman Anvil: Fracture and Reaction, Int. J. SHS, 2004, vol. 13, no. 3, pp. 233–243. Richter, C. and Viljoen, H.J., A Combinatorial Approach to Surface Contacts in Solid Phase Reactions, Thermochem. Acta, 2002, vol. 384, pp. 315–328. Stangle, G.C., Venkatachari, K.R., Ostrander, S.P., and Schulze, W.A., Process for Making Ultra-Fine Stabilized Zirconia Particles, US Patent 5716565, 1998. He, C. and Stangle, G.C., A Micromechanistic Model of the Combustion Synthesis Process: Modes of Ignition, J. Mater. Res., 1998, vol. 13, no. 1, pp. 135–145. He, C. and Stangle, G.C., A Micromechanistic Model of the Combustion Synthesis Process: Mechanism of Ignition, J. Mater. Res., 1998, vol. 13, no. 1, pp. 146–155. Stangle, G.C., Venkatachari, K.R., Ostrander, S.P., Schulze, W.A., and Pietras, J.D., Process for Making Ultra-Fine Yttrium-Iron-Garnet Particles, US Patent 5 660 773, 1997. Stangle, G.C., Venkatachari, K.R., Ostrander, S.P., Schulze, W.A., and Pietras, J.D., Process for Making Ultra-Fine Barium Hexaferrite Particles, US Patent 5 660 772, 1997. Stangle, G.C., Venkatachari, K.R., Ostrander, S.P., Schulze, W.A., and Pietras, J.D., Process for Making a Sintered Body from Ultra-Fine Superconductive Particles, US Patent 5 660 774, 1997. Stangle, G.C., Venkatachari, K.R., Ostrander, S.P., and Schulze, W.A., Process for Making Ultra-Fine Barium Titanate Particles, US Patent 5 523 065, 1996. Jiang, S., Stangle, G.C., Schulze, W.A., and Amarakoon, V.R.W., Synthesis of Yttria-Stabilized Zirconia Nanoparticles by Decomposition of Metal Nitrates Coated on Carbon Powder, J. Mater. Res., 1996, vol. 11, no. 11, pp. 2318–2324. Zhou, Z. and Stangle, G.C., Kinetics of a Non-Catalytic Gas-Solid Chemical Reaction under SHS-Like Conditions, J. Mater. Sci., 1995, vol. 30, no. 12, pp. 3256–3264. Zhang, Y. and Stangle, G.C., Micromechanistic Model of the Combined Combustion Synthesis-Densification Process, J. Mater. Res., 1995, vol. 10, no. 7, pp. 1828–1845. Zhang, Y. and Stangle, G.C., Micromechanistic Model of Microstructure Development during the Combustion Synthesis Process, J. Mater. Res., 1995, vol. 10, no. 4, pp. 962–980. Williams, W.C. and Stangle, G.C., Fabrication of Near-Net-Shape Al2O3-Fiber-Reinforced Ni3Al Composites by Combustion Synthesis, J. Mater. Res., 1995, vol. 10, no. 7, pp. 1736–1745. Venkatachari, K.R., Huang, D., Ostrander, S.P., Schulze, W.A., and Stangle, G.C., A Combustion Synthesis Process for Synthesizing Nanocrystalline Zirconia Powders, J. Mater. Res., 1995, vol. 10, no. 3, pp. 748–755. Venkatachari, K.R., Huang, D., Ostrander, S.P., Schulze, W.A., and Stangle, G.C., Preparation of Nanocrystalline Yttria-Stabilized Zirconia, J. Mater. Res., 1995, vol. 10, no. 3, pp. 756–761. Stangle, G.C., Venkatachari, K.R., Ostrander, S.P., and Schulze, W.A., Process for Making Ultra-Fine Ceramic Particles, US Patent 5 468 427, 1995. Huang, D., Venkatachari, K.R., and Stangle, G.C., Influence of Yttria Content on the Preparation of Nanocrystalline Yttria-Doped Zirconia, J. Mater. Res., 1995, vol. 10, no. 3, pp. 762–773. He, C. and Stangle, G.C., The Mechanism and Kinetics of the Niobium-Carbon Reaction under Self-Propagating High-Temperature Synthesis-Like Conditions, J. Mater. Res., 1995, vol. 10, no. 11, pp. 2829–2841. Zhang, Y. and Stangle, G.C., A Micromechanistic Model of the Combustion Synthesis Process. I. Theoretical Development, J. Mater. Res., 1994, vol. 9, no. 10, pp. 2592–2604. Zhang, Y. and Stangle, G.C., A Micromechanistic Model of the Combustion Synthesis Process. II. Numerical Simulation, J. Mater. Res., 1994, vol. 9, no. 10, pp. 2605–2619. Zhang, Y. and Stangle, G.C., Preparation of Fine Multi-component Oxide Ceramic Powder by a Combustion Synthesis Process, J. Mater. Res., 1994, vol. 9, no. 8, pp. 1997–2004. Stangle, G.C. and Williams, W.C., Combustion Synthesis Process Utilizing an Ignitable Primer which Is Ignited after Application of Pressure, US Patent 5 342 572, 1994. Stangle, G.C., Niedzialek, S.E., and Williams, W.C., Combustion Synthesis Process Utilizing an Ignitable Primer which Is Ignited after Application of Pressure, US Patent 5 340 533, 1994. Abel, J.S., Stangle, G.C., Schilling, C.H., and Aksay, I.A., Sedimentation in Flocculating Colloidal Suspensions, J. Mater. Res., 1994, vol. 9, no. 2, pp. 451–461. Zhang, Y. and Stangle, G.C., Ignition Criteria for Self-Propagating Combustion Synthesis, J. Mater. Res., 1993, vol. 8, no. 7, pp. 1703–1711. Niedzialek, S.E., Stangle, G.C., and Kaieda, Y., Functionally Gradient Materials for Use in Thermal Barrier Coating Applications, Int. J. SHS, 1993, vol. 2, no. 3, pp. 269–280. Niedzialek, S.E., Stangle, G.C., and Kaieda, Y., Combustion-Synthesized Functionally Gradient Refractory Materials, J. Mater. Res., 1993, vol. 8, no. 8, pp. 2026–2034. Golubjatnikov, K.A., Stangle, G.C., and Spriggs, R.M., Economics of Advanced Self-Propagating High-Temperature Synthesis Materials Fabrication, Am. Ceram. Soc. Bull., 1993, vol. 72, no. 12, pp. 96–102. Ford, R.G. and Stangle, G.C., Compositionally Gradient Materials-Unconventional Composites, in High Temperature Ceramic Matrix Composites (Proc. 6th European Conf. on Composite Materials), 1993, pp. 795–811. Kudesia, R., Niedzialek, S.E., Stangle, G.C., McCauley, J.W., Spriggs, R.M., and Kaieda, Y., Design and Fabrication of TiC/NiAl Functionally Gradient Materials for Joining Applications, Ceram. Eng. Sci. Proc., 1992, vol. 13, nos. 7, 8, pp. 374–383. Golubjatnikov, K.A., Stangle, G.C., and Spriggs, R.M., Cost Performance Goals for Advanced SHS Materials, Int. J. SHS, 1992, vol. 1, no. 2, pp. 284–293. Baya, S.S., Stangle, G.C., and Snyder, R.L., Synthesis of Superconducting Phases in the Tl-Ba-Ca-Cu-O System, in Proc. AIP Conference: Superconductivity and its Applications, Kao, Y.H., Kaloyeros, A.E., and Kwok, H.S., Eds., New York: American Institute of Physics, 1992, vol. 251, pp. 261–273. Hwang, S., Mukasyan, A.S., and Varma, A., Mechanism of Combustion Wave Propagation in Heterogeneous Reaction Systems, Combust. Flame, 1998, vol. 115, 354–363. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 11053–11058. Mukasyan, A.S., Rogachev, A.S., and Varma, A., Mechanism of Reaction Wave Propagation during Combustion Synthesis of Advanced Materials, Chem. Eng. Sci., 1999, vol. 54, pp. 3357–3367. Mukasyan, A.S., Rogachev, A.S., and Varma, A., Microstructural Mechanisms of Combustion in Heterogeneous Reaction Media, Proc. Combust. Inst., 2000, vol. 28, pp. 1413–1419. Varma, A., Mukasyan, A.S., and Hwang, S., Dynamics of Self-Propagating Reactions in Heterogeneous Media: Experiments and Model, Chem. Eng. Sci., 2001, vol. 56, pp. 1459–1466. Mukasyan, A.S., Pelekh, A, Varma, A., Rogachev, A.S., and Jenkins, A., The Effects of Gravity on Combustion Synthesis in Heterogeneous Gasless Systems, AIAA J., 1997, vol. 35, no. 11, pp. 1821–1828. Lau, C., Mukasyan, A.S., Pelekh, A., and Varma, A., Mechanistic Studies in Combustion Synthesis of NiAl-TiB2 Composites: Effects of Gravity, J. Mater. Res., 2001, vol. 16, no. 6, pp. 1614–1625. Lau, C., Mukasyan, A.S., and Varma, A., Materials Synthesis by Reduction-Type Combustion Reaction: Influence of Gravity, Proc. Combust. Inst., 2002, vol. 29, pp. 1101–1108. Lau, C., Mukasyan, A.S., and Varma, A., Reaction and Phase Separation Mechanisms during Synthesis of Alloys by Thermite-Type Combustion Reactions, J. Mater. Res., 2003, vol. 18, no. 1, pp. 121–129. Galstyan, G., Chatilyan, H.A., Kirakosyan, A., Kharatyan, S.L, Mukasyan, A.S., and Varma, A., Reactive Diffusion in Mo-Si System above Melting Point of Silicon, Defects Diffusion Forum, 2005, vols. 237–240, pp. 873–878. Kharatyan, S.L., Chatilyan, H.A., Mukasyan, A.S., Simonetti, D.A., and Varma, A., Influence of Heating Rate on Kinetics of Rapid High-Temperature Reactions in Condensed Heterogeneous Media: Mo-Si System, AIChE J., 2005, vol. 51, no. 1, pp. 261–270. Thiers, L., Leitenberger, B., Mukasyan, A.S., and Varma, A., Influence of Preheating Rate on Kinetics of High-Temperature Gas-Solid Reactions, AIChE J., 2000, vol. 46, no. 12, pp. 2518–2524. Lebrat, J.P. and Varma, A., Self-Propagating High-Temperature Synthesis of Ni3Al, Comb. Sci. Technol., 1992, vol. 88, p. 211. Rogachev, A.S., Varma, A., and Merzhanov, A.G., The Mechanism of Self-Propagating High-Temperature Synthesis of Nickel Aluminides, Part I: Formation of the Product Microstructure in a Combustion Wave, Int. J. SHS, 1993, vol. 2, no. 1, pp. 25–38. Rogachev, A.S., Shugayev, V.A., Kachelmyer, C.R., and Varma, A., Mechanism of Structure Formation during Combustion Synthesis of Materials, Chem. Eng. Sci., 1994, vol. 49, no. 24, pp. 4949–4958. Zhou, E., Bhaduri, S., Bhaduri, S.B., Lewis, I.R., and Griffiths, P.R., Auto Ignition Processing of Nanocrystalline Zirconia, in Proc. and Properties of Nanocrystalline Materials, Suryanarayana, C., Singh, J., and Froes, F.H., Eds., Warrendale, PA: TMS, 1995, pp. 123–133. Bhaduri, S., Bhaduri, S.B., and Zhou, E., Auto Ignition Processing of Nanocrystalline α-Al2O3, Nanostr. Mater., 1996, vol. 7, pp. 487–496. Bhaduri, S., Bhaduri, S.B., and Zhou, E., Auto Ignition Synthesis and Consolidation of Al2O3-ZrO2 Nano/Nano Composite Powders, J. Mater. Res., 1998, vol. 13, pp. 156–166. Bhaduri, S., Bhaduri, S.B., and Zhou, E., Synthesis and Characterization of CeO2-Doped Nanocrystalline ZrO2, Int. J. SHS, 1998, vol. 7, pp. 317–325. Bhaduri, S., Bhaduri, S.B., and Prisbrey, K.A., Auto Ignition Synthesis of Nanocrystalline MgAl2O4 and Related Nanocomposites, J. Mater. Res., 1999, vol. 14, p. 3571. Mukasyan, A.S., and Dinka, P., Novel Method for Synthesis of Nano-Materials: Combustion of Active Impregnated Layer, J. Adv. Eng. Mater., 2007, vol. 9, pp. 653–657. Lan, A. and Mukasyan, A.S., Perovskite-Based Catalysts for Direct Methanol Fuel Cells, J. Phys. Chem., 2007, vol. 26, pp. 9573–9582. Mukasyan, A.S. and Dinka, P., Novel Approaches to Solution-Combustion Synthesis of Nanomaterials, Int. J. SHS, 2007, vol. 16, no. 1, pp. 23–35. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution-Combustion Synthesis of Nanomaterials, Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1789–1795. Dinka, P. and Mukasyan, A., Perovskite Catalysts for the Auto-Reforming of Sulfur Containing Fuels, J. Power Sources, 2007, vol. 167, pp. 472–481. Dinka, P. and Mukasyan, A., In Situ Preparation of the Supported Catalysts by Solution-Combustion Synthesis, J. Phys. Chem., 2005, vol. 109, no. 46, pp. 21627–21633. Yi, H.C. and Moore, J.J., Combustion Synthesis of TiNi Intermetallic Compounds, J. Mater. Sci., 1989, vol. 24, pp. 3449–3455. Moore, J.J., Readey, D.W., Feng, H.J., Monroe, K., and Mishra, B., The Combustion Synthesis of Advanced Materials, J. Metals, 1994, vol. 11, pp. 72–78. Feng, H.J., Moore, J.J., and Wirth, D.G., Combustion Synthesis of Ceramic-Metal Composite Materials: The TiC-Al2O3-Al System, Metall. Trans., Ser. A, 1992, vol. 23, pp. 2373–2379. Ayres, R., Burkes, D., Ottoli, G., Yi, H.C., Guigne, J.Y., and Moore, J.J., The Application of Energetic SHS Reactions in the Synthesis of Multifunctional Bone Tissue Engineering and Drug Delivery Systems, Mater. Res. Symp. Proc., 2006, vol. 896, pp. 1–13. Logan, K.V., Sparrow, J.T., and McLemore, W.J.S., Experimental Modeling of Particle-Particle Interactions during SHS of TiB2-Al2O3, in Combustion and Plasma Synthesis of High-Temperature Materials, VCH Publishers, 1990, pp. 219–228. Keckes, L.J., Kottke, T., and Niiler, A., Powder Purity and Morphology Effects in Combustion Synthesis Reactions, in Combustion and Plasma Synthesis of High-Temperature Materials, VCH Publishers, 1990, pp. 157–162. Niiler, A., Keckes, L.J., and Kottke, T., Shock Consolidation of Combustion-Synthesized Ceramics, in Combustion and Plasma Synthesis of High-Temperature Materials, VCH Publishers, 1990, pp. 309–314. LaSalvia, J., Meyer, L.W., Hoke, D., Niiler, A., and Meyers, M.A., Reaction Synthesis/Dynamic Compaction of Titanium Carbide and Titanium Diboride, in Shock Waves and High-Strain-Rate Phenomena in Materials, Meyers, M.A., Murr, L.E., and Staudhammer, K.P., Eds., New York: Marcel Dekker, 1992, pp. 261–270. Ferreira, A., Meyers, M.A., and Thadhani, N.N., Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical Properties, Metall. Trans., Ser. A, 1992, vol. 23, pp. 3251–3261. Hoke, D.A., Meyers, M.A., Meyer, L.W., and Gray III, G.T., Reaction Synthesis/Dynamic Compaction of Titanium Diboride, Metall. Trans., Ser. A, 1992, vol. 23, pp. 77–86. Meyers, M.A., LaSalvia, J.C., Meyer, L.W., Hoke, D., and Niiler, A., Reaction Synthesis/Dynamic Compaction of Titanium Carbide and Titanium Diboride, J. Phys., Ser. C (Paris), 1991, vol. 3, pp. 123–130. Vecchio, K.S., LaSalvia, J.C., Meyers, M.A., and Gray III, G.T., Microstructural Characterization of Self-Propagating High-Temperature Synthesis: Dynamically Compacted and Hot Pressed Titanium Carbides, Metall. Trans., Ser. A, 1992, vol. 23, pp. 87–97. Meyers, M.A., Olevsky, E.A., Ma, J., and Jamet, J.-M., Combustion Synthesis/Densification of Al2O3-TiB2 Composite, Mater. Sci. Eng., 2001, vol. 311, pp. 83–99. Hoke, D.A., Kim, D.K., LaSalvia, J.C., and Meyers, M.A., Combustion Synthesis/Dynamic Compaction of TiB2-SiC Composite, J. Am. Ceram. Soc., 1996, vol. 79, pp. 177–182. LaSalvia, J.C., Meyers, M.A., and Kim, D.K., Combustion Synthesis/Dynamic Densification of TiC-Ni Cermets, J. Mater. Synth. Process., 1994, vol. 2, no. 4, pp. 255–274. Hoke, D.A. and Meyers, M.A., Consolidation of Combustion Synthesized Titanium Diboride-Based Materials, J. Am. Ceram. Soc., 1994, vol. 78, no. 2, pp. 275–284. Kim, D.K., LaSalvia, J.C., Hoke, D.A., and Meyers, M.A., Combustion Synthesis/Dynamic Compaction of TiB2-SiC Composite, J. Am. Ceram. Soc., 1995, vol. 78, pp. 275–284. LaSalvia, J.C., Kim, D.K., Lipsett, R.A., and Meyers, M.A., Combustion Synthesis in the Ti-C-Ni-Mo System. I. Macrokinetics and Micromechanisms, Met. Mater. Trans., Ser. A, 1995, vol. 26, pp. 3001–3009. LaSalvia, J.C. and Meyers, M.A., Combustion Synthesis in the Ti-C-Ni-Mo System. II. Analysis, Met. Mater. Trans., Ser. A, 1995, vol. 26, pp. 3011–3019. Raman, R.V., Rele, S.V., Poland, S., LaSalvia, J.C., Meyers, M.A., and Niiler, A.R., The One-Step Synthesis of Dense Titanium-Carbide Tiles, J. Metals, 1995, pp. 23–25. LaSalvia, J.C. and Meyers, M.A., Microstructure, Properties, and Mechanisms of TiC-Mo-Ni Cermets Produced by SHS, Int. J. SHS, 1995, vol. 4, pp. 43–57. Olevsky, E.A., Kristofetz, E.R., and Meyers, M.A., Controlled Net Shape, Density, and Microstructure of TiC-NiTi Cermets Using Quasi-Isostatic Pressing, Int. J. SHS, 1998, vol. 7, pp. 517–528. Strutt, E.R., Olevsky, E.A., and Meyers, M.A., Combustion Synthesis and Quasi-Isostatic Densification of Powder Cermets, Mater. Process. Technol., 2001, pp. 157–166. Work, S.J., Yu, L.H., Thadani, N.N., Meyers, M.A., Graham, R.A., and Hammetter, W.F., Shock-Induced Chemical Synthesis of Intermetallic Compounds, in Combustion and Plasma Synthesis of High-Temperature Materials, VCH Publishers, 1990, pp. 133–143. Ward, R., Thadani, N.N., and Persson, P.A., Shock-Induced Reaction Synthesis-Assisted Processing of Ceramics, in Combustion and Plasma Synthesis of High-Temperature Materials, VCH Publishers, 1990, pp. 294–302. Xue, H., Vandersal, K., Carillo-Heian, E., Thadani, N.N., and Munir, Z.A., Initiation of Self-Propagating Combustion Waves in Dense Mo-2Si Reactants through Field Activation, J. Am. Ceram. Soc., 1999, vol. 82, no. 6, pp. 1441–1446. Namjoshi, S.N. and Thadani, N.N., Modeling the Reaction Synthesis of Shock-Densified Ti-Si Powder Mixture Compact, Metall. Trans., Ser. B, 2000, vol. 31, no. 2, pp. 307–316. Vandersal, K.V. and Thadani, N.N., Investigation of Shock-Induced and Shock-Assisted Chemical Reactions in Mo + 2Si Powder Mixtures, Metall. Trans., Ser. A, 2003, vol. 34, no. 2, pp. 15–23. Vandersal, K.V. and Thadani, N.N., Time-Resolved Measurements of the Shock-Compression Response of Mo + 2Si Elemental Powder Mixtures, J. Appl. Phys., 2003, vol. 94, no. 3, 1575–1583. Martirosyan, K.S. and Luss, D., Carbon Combustion Synthesis of Oxides: Process Demonstration and Features, AIChE J., 2005, vol. 51, no. 10, pp. 2801–2810. Martirosyan, K.S. and Luss, D., Carbon Combustion Synthesis of Ferrites: Synthesis and Characterization, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 1492–1499. Martirosyan, K.S., Iliev, M., and Luss, D., Carbon Combustion Synthesis of Nanostructured Perovskites, Int. J. SHS, 2007, vol. 16, no. 1, pp. 36–45. Martirosyan, K.S., Chang, L., Rantschler, J., Khizroev, S., Luss, D., and Litvinov, D., Carbon Combustion Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles, IEEE Trans. Magnetics, 2007, vol. 43, no. 6, pp. 3118–3120. Nersesyan, M.D., Claycomb, J.R., Ritchie, J.T., Miller, J.H., Jr., and Luss, D., Magnetic Fields Produced by Combustion of Metals in Oxygen, Combust. Sci. Technol., 2001, vol. 169, pp. 89–106. Nersesyan, M.D., Ritchie, J.T., Filimonov, I.A., Richardson, J.T., and Luss, D., Electric Field Produced by High Temperature Metal Oxidation, J. Electrochem. Soc., 2002, vol. 149, pp. J11–J17. Martirosyan, K.S., Filimonov, I.A., and Luss, D., New Measuring Techniques of Electric Field Generated by Combustion Synthesis, Int. J. SHS, 2002, vol. 11, pp. 325–333. Martirosyan, K.S., Claycomb, J.R., Gogoshin, G., Yarbrough, R.A., Miller, J.H., Jr., and Luss, D., Spontaneous Magnetization Generated by Spin, Pulsating and Planar Combustion Synthesis, J. Appl. Phys., 2003, vol. 93, pp. 9329–9335. Martirosyan, K.S., Claycomb, J.R., Miller, J.H., Jr., and Luss, D., Generation of the Transient Electrical and Spontaneous Magnetic Fields by Solid State Combustion, J. Appl. Phys., 2004, vol. 96, pp. 4632–4636. Setoodeh, M., Martirosyan, K.S., and Luss, D., Electrical Pulse Formation during High Temperature Reaction between Ni and Al, J. Appl. Phys., 2006, vol. 99, pp. 084901-1–084901-7. Martirosyan, K.S., Nawarathna, D., Claycomb, J.R., Miller, J.H., Jr., and Luss, D., Complex Dielectric Behavior during the Formation of BaTiO3 by Combustion Synthesis, J. Phys., Ser. D: Appl. Phys., 2006, vol. 39, pp. 3689–3694. Reiss, M.E., Esber, C.M., Van Heerden, D., Gavens, A.J., Williams, M.E., and Weihs, T.P., Self-Propagating Formation Reactions in Nb/Si Multilayers, Mater. Sci. Eng., Ser. A, 1999, vol. 261, pp. 217–222. Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E., and Weihs, T.P., Effect of Intermixing on Self-Propagating Exothermic Reactions in Al/Ni Nanolaminate Foils, J. Appl. Phys., 2000, vol. 87, no. 3, pp. 1255–1263. Blobaum, K.J., Van Heerden, D., Gavens, A.J., and Weihs, T.P., Al/Ni Formation Reactions: Characterization of the Metastable Al9Ni2 Phase and Analysis of its Formation, Acta Mater., 2003, vol. 51, no. 13, pp. 3871–3884.