Benchmark comparison of Co3O4 spinel-structured oxides with different morphologies for oxygen evolution reaction under alkaline conditions
Tóm tắt
In this work, a series of Co3O4 spinels were produced by different synthesis routes (precipitation, solution combustion synthesis, and hard template method), and were used as non-noble catalysts for the oxygen evolution reaction (OER) under basic conditions. The investigated catalysts have a proportional relation between electrochemical activity, surface roughness, and specific surface area. The hard template synthesis method resulted in the most active catalyst compared in this work, which we ascribe to its highly porous structure, and concomitant Co3+/Co4+ redox couple at a lower potential, attributed to the OER. The most performant catalyst was compared with a commercial catalyst (Ni@NiO, Alfa Aesar) showing only 0.01 V overpotential difference, evaluated at 10 mA cm− 2 (overpotential 0.44 V).
Tài liệu tham khảo
Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. doi:10.1016/j.cattod.2008.08.039
Turner JA (2004) Sustainable hydrogen production. Science 305:972–974. doi:10.1126/science.1103197
Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy 29:1443–1450. doi:10.1016/j.ijhydene.2004.01.016
Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326. doi:10.1016/j.pecs.2009.11.002
Giordano L, Han B, Risch M et al (2016) PH dependence of OER activity of oxides: current and future perspectives. Catal Today 262:2–10. doi:10.1016/j.cattod.2015.10.006
Burke MS, Zou S, Enman LJ et al (2015) Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J Phys Chem Lett 6:3737–3742. doi:10.1021/acs.jpclett.5b01650
Hong WT, Risch M, Stoerzinger KA et al (2013) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8:1404–1427. doi:10.1039/b000000x/
Amjad U-ES, Vita A, Galletti C et al (2013) Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts. Ind Eng Chem Res 52:15428–15436. doi:10.1021/ie400679h
Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36. doi:10.1002/cssc.201000182
Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934. doi:10.1016/j.ijhydene.2013.01.151
Siracusano S, Van Dijk N, Payne-Johnson E et al (2015) Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Appl Catal B Environ 164:488–495. doi:10.1016/j.apcatb.2014.09.005
Burke MS, Enman LJ, Batchellor AS et al (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27:7549–7558. doi:10.1021/acs.chemmater.5b03148
McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. doi:10.1021/ja407115p
Pletcher D, Li X, Price SWT et al (2016) Comparison of the spinels Co3O4 and NiCo2O4 as bifunctional oxygen catalysts in alkaline media. Electrochim Acta 188:286–293. doi:10.1016/j.electacta.2015.10.020
Xu L, Jiang Q, Xiao Z, et al (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chemie Int Ed 55:5277–5281. doi:10.1002/anie.201600687
Zhang L, Li H, Li K et al (2016) Morphology-controlled fabrication of Co3O4 nanostructures and their comparative catalytic activity for oxygen evolution reaction. J Alloys Compd 680:146–154. doi:10.1016/j.jallcom.2016.04.084
Chen Z, Kronawitter CX, Koel BE (2015) Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction. Phys Chem Chem Phys 17:29387–29393. doi:10.1039/c5cp02876k
Li L, Tian T, Jiang J, Ai L (2015) Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J Power Sources 294:103–111. doi:10.1016/j.jpowsour.2015.06.056
Singh SK, Dhavale VM, Kurungot S (2015) Low surface energy plane exposed Co3O4 nanocubes supported on nitrogen-doped graphene as an electrocatalyst for efficient water oxidation. ACS Appl Mater Interfaces 7:442–451. doi:10.1021/am506450c
Zhang X, Zhang J, Wang K (2015) Codoping-induced, rhombus-shaped Co3O4 nanosheets as an active electrode material for oxygen evolution. ACS Appl Mater Interfaces 7:21745–21750. doi:10.1021/acsami.5b05149
Wang Y, Zhou T, Jiang K, et al (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4:1–7. doi:10.1002/aenm.201400696
Hamdani M, Singh RN, Chartier P (2010) Co3O4 and co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5:556–577
Esswein AJ, Mcmurdo MJ, Ross PN et al (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072. doi:10.1021/jp904022e
Lv X, Zhu Y, Jiang H, et al (2015) Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans 44:4148–4154. doi:10.1039/c4dt03803g
Lal B, Singh NK, Samuel S, Singh RN (1999) Electrocatalytic properties of CuxCo(3−x)O4 (0 < x < 1) obtained by a new precipitation method for oxygen evolution. J New Mater Electrochem Syst 2:59–64
Singh RN, Pandey JP, Singh NK et al (2000) Sol–gel derived spinel MxCo3−xO4 (M = Ni, Cu; 0 ≤ x ≤ 1) films and oxygen evolution. Electrochim Acta 45:1911–1919. doi:10.1016/S0013-4686(99)00413-2
Laouini E, Hamdani M, Pereira MIS et al (2008) Preparation and electrochemical characterization of spinel type Fe-Co3O4 thin film electrodes in alkaline medium. Int J Hydrogen Energy 33:4936–4944. doi:10.1016/j.ijhydene.2008.07.039
Mayrhofer KJJ, Strmcnik D, Blizanac BB et al (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53:3181–3188. doi:10.1016/j.electacta.2007.11.057
Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654. doi:10.1021/jp201200e
You B, Jiang N, Sheng M et al (2015) High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem Mater 27:7636–7642. doi:10.1021/acs.chemmater.5b02877
Menezes PW, Indra A, Gonzàlez-Flores D, et al (2015) High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity. ACS Catal 5:2017–2027. doi:10.1021/cs501724v
Stelmachowski P, Ciura K, Grzybek G, et al (2016) Morphology-dependent reactivity of cobalt oxide nanoparticles in N2O decomposition. Catal Sci Technol 15:851. doi:10.1039/C6CY00365F
Specchia S, Galletti C, Specchia V (2010) Solution combustion synthesis as intriguing technique to quickly produce performing catalysts for specific applications. Stud Surf Sci Catal 175:59–67
Ercolino G, Grzybek G, Stelmachowski P, et al (2015) Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal Today 257:66–71. doi:10.1016/j.cattod.2015.03.006
Zheng MB, Cao J, Liao ST et al (2009) Preparation of mesoporous Co3O4 nanoparticles via solid–liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. J Phys Chem C 113:3887–3894. doi:10.1021/jp810230d
Spinolo G, Ardizzone S, Trasatti S (1997) Surface characterization of Co3O4 electrodes prepared by the sol–gel method. J Electroanal Chem 423:49–57. doi:10.1016/S0022-0728(96)04841-3
Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218. doi:10.1351/pac198557040603
Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C Solid State Phys 21:L199–L201. doi:10.1088/0022-3719/21/7/007
Lorite I, Romero JJ, Fernández JF (2012) Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles. J Raman Spectrosc 43:1443–1448. doi:10.1002/jrs.4098
Umeshbabu E, Ranga Rao G (2016) NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation. Electrochim Acta 213:717–729. doi:10.1016/j.electacta.2016.07.161
Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452. doi:10.1016/0079-6816(95)00040-6
Zhan Y, Lu M, Yang S, et al (2016) The origin of catalytic activity of nickel phosphate for oxygen evolution in alkaline solution and its further enhancement by iron substitution. ChemElectroChem 3:615–621. doi:10.1002/celc.201500511
Łukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of noble metal electrodes: an overview. Int J Electrochem Sci 11:4442–4469. doi:10.20964/2016.06.71
Patil V (2012) Synthesis and characterization of Co3O4 thin film. Soft Nanosci Lett 2:1–7. doi:10.4236/snl.2012.21001
Wang X, Luo H, Yang H et al (2004) Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. Int J Hydrogen Energy 29:967–972. doi:10.1016/j.ijhydene.2003.05.001