Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach
Tài liệu tham khảo
Patil, 2002, Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci., 6, 507, 10.1016/S1359-0286(02)00123-7
Jain, 1981, A new approach to thermochemical calculations of condensed fuel–oxidizer mixtures, Combust. Flame, 40, 71, 10.1016/0010-2180(81)90111-5
Hwang, 2006, Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route, Mater. Sci. Eng. B, 132, 229, 10.1016/j.mseb.2006.01.021
Mukasyan, 2007, Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 31, 1789, 10.1016/j.proci.2006.07.052
Tyagi, 2006, A visit to the fascinating world of nano-ceramics powders via solution-combustion, Ind. J. Pure Appl. Phys., 44, 113
Chen, 2006, A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis, Mater. Lett., 60, 57, 10.1016/j.matlet.2005.07.088
Bedekar, 2007, Nanocrystalline electroceramics by combustion method, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 321, 10.1080/15533170701385739
Xu, 2004, Citrate method synthesis, characterization and mixed electronic–ionic conduction properties of La0.6Sr0.4Fe0.2Co0.8O3 perovskite-type complex oxides, Scr. Mater., 50, 165, 10.1016/j.scriptamat.2003.09.008
Majid, 2005, Preparation of SrFeO2.85 perovskite using a citric acid assisted Pechini-type method, J. Alloys Compd., 398, 48, 10.1016/j.jallcom.2005.02.023
Palmisano, 2006, High catalytic activity of SCS-synthesized ceria towards diesel soot combustion, Appl. Catal. B: Environ., 69, 85, 10.1016/j.apcatb.2006.06.002
Carvalho, 1997, New preparation method of Lan+1NinO3n+1-δ (n=2, 3), J. Mater. Chem., 7, 2107, 10.1039/a702424j
Marinsek, 2002, Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis, J. Power Sources, 106, 178, 10.1016/S0378-7753(01)01056-4
Chakroborty, 2002, Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique, Mater. Lett., 57, 862, 10.1016/S0167-577X(02)00886-8
Mali, 2004, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method, Ceram. Int., 30, 1979, 10.1016/j.ceramint.2003.12.178
Hernandez, 2005, The role of the synthesis route to obtain densified TiO2-doped alumina ceramics, J. Eur. Ceram. Soc., 25, 663, 10.1016/j.jeurceramsoc.2004.01.013
Pechini, M., US Patent, 3,330,697; 1967.
Epifani, 2007, Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes, J. Eur. Ceram. Soc., 27, 115, 10.1016/j.jeurceramsoc.2006.04.084
Erri, 2004, Oxidizer–fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate-model fuels, Ind. Eng. Chem. Res., 43, 3092, 10.1021/ie030822f
Hwang, 2004, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Mater. Sci. Eng. B, 111, 49, 10.1016/j.mseb.2004.03.023
Li, 2002, Combustion synthesis of γ-lithium aluminate by using various fuels, J. Nucl. Mater., 300, 82, 10.1016/S0022-3115(01)00710-3
Wu, 2005, Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni–Zn ferrite, Mater. Sci. Eng. B, 123, 227, 10.1016/j.mseb.2005.08.005
Mukasyan, 2001, Perovskite membranes by aqueous combustion synthesis: synthesis and properties, Sep. Purif. Technol., 25, 117, 10.1016/S1383-5866(01)00096-X
Hosseini Vajargah, 2007, Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate–citrate gel, J. Alloys Compd., 430, 339, 10.1016/j.jallcom.2006.05.023
Hwang, 2001, Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol–gel method at low temperature, J. Power Sources, 101, 86, 10.1016/S0378-7753(01)00657-7
Wu, 2006, Effect of pH on synthesis and properties of perovskite oxide via a citrate process, AlChE J., 52, 769, 10.1002/aic.10664
Yue, 2004, Synthesis of nanocrystalline ferrites by sol–gel combustion process: the influence of pH value of solution, J. Magn. Magn. Mater., 270, 216, 10.1016/j.jmmm.2003.08.025
Cannas, 2006, CoFe2O4 nanocrystalline powders prepared by citrate–gel methods: synthesis, structure and magnetic properties, J. Nanopartic. Res., 8, 255, 10.1007/s11051-005-9028-7
Xu, 2006, Influence of pH on characteristics of BaFe12O19 powder prepared by sol–gel auto-combustion, J. Magn. Magn. Mater., 301, 383, 10.1016/j.jmmm.2005.07.014
Peng, 2006, Effect of acidity on the glycine–nitrate combustion synthesis of nanocrystalline alumina powder, Mater. Res. Bull., 41, 1638, 10.1016/j.materresbull.2006.02.026
Civera, 2003, Combustion synthesis of perovskite-type catalysts for natural gas combustion, Catal. Today, 83, 199, 10.1016/S0920-5861(03)00220-7
Burgos-Montes, 2006, Influence of combustion aids on suspension combustion synthesis of mullite powders, J. Eur. Ceram. Soc., 26, 3365, 10.1016/j.jeurceramsoc.2005.08.006
Biamino, 2004, Combustion synthesis of lanthanum chromite starting from water solutions: investigation of process mechanism by DTA-TGA-MS, J. Eur. Ceram. Soc., 24, 3021, 10.1016/j.jeurceramsoc.2003.10.005
Chen, 2006, A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis, Mater. Sci. Eng. B, 133, 151, 10.1016/j.mseb.2006.06.020
Chandramouli, 1999, Combustion synthesis of thoria—a feasibility study, J. Nucl. Mater, 265, 255, 10.1016/S0022-3115(98)00688-6
Poth, 2000, Combustion-synthesis of SrTiO3. Part I. Synthesis and properties of the ignition products, J. Eur. Ceram. Soc., 20, 707, 10.1016/S0955-2219(99)00190-9
Deganello, 2007, Cathode performance of nanostructured La1−aSraCo1−bFebO3−x on a Ce0.8Sm0.2O2 electrolyte prepared by citrate–nitrate autocombustion, J. Electrochem. Soc., 154, A89, 10.1149/1.2400611
Deganello, 2006, Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates, J. Solid State Chem., 179, 3406, 10.1016/j.jssc.2006.06.027
Longo, 2006, Local environment of yttrium in Y-doped barium cerate compounds, Chem. Mater., 18, 5782, 10.1021/cm0615018
Giannici, 2007, Local environment of barium, cerium and yttrium in BaCe1−xYxO3-δ ceramic protonic conductors, Solid State Ionics, 178, 587, 10.1016/j.ssi.2007.01.015
Takeuchi, 2000, The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping, Solid State Ionics, 138, 63, 10.1016/S0167-2738(00)00771-2
Suksamai, 2007, Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC, Solid State Ionics, 178, 627, 10.1016/j.ssi.2007.02.003
McCusker, 1999, Rietveld refinement guidelines, J. Appl. Cryst., 32, 36, 10.1107/S0021889898009856
Larson, 1998
Brunauer, 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023
Barret, 1951, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373, 10.1021/ja01145a126
Hwang, 2004, Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method, Mater. Sci. Eng. B, 111, 197, 10.1016/S0921-5107(04)00203-X
Guo, 2006, Synthesis and properties of La0.7Sr0. 3MnO3 cathode by gel combustion, Mater. Lett., 60, 261, 10.1016/j.matlet.2005.08.027
Smith, 1975, 2
Chick, 1994, Glycine–nitrate synthesis of a ceramic–metal composite, Nanostruct. Mater., 4, 603, 10.1016/0965-9773(94)90070-1
Bhaduri, 1996, Auto ignition processing of nanocrystalline α-Al2O3, Nanostruct. Mater., 7, 487, 10.1016/0965-9773(96)00030-X
Jung, 2005, Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere, Mater. Lett., 59, 2426, 10.1016/j.matlet.2005.03.021
Petrov, 1995, Solid State Ionics, 80, 189, 10.1016/0167-2738(95)00114-L
Singh, 2007, Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process, Ceram. Int., 33, 1463, 10.1016/j.ceramint.2006.05.021
Li, 2008, Nanostructured Nd:YAG powders via gel combustion: the influence of citrate-to-nitrate ratio, Ceram. Int., 34, 141, 10.1016/j.ceramint.2006.09.002
Azadmanjiri, 2006, The effects of pH and citric acid concentration on the characteristics of nanocrystalline NiFe2O4 powder synthesized by a sol–gel autocombustion method, Phys. Met. Metallogr., 102, S21, 10.1134/S0031918X06140055
Xu, 2006, Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid–nitrate low-temperature combustion process, J. Power Sources, 163, 409, 10.1016/j.jpowsour.2006.09.021
Zhang, 2004, Antimony-doped tin oxide nanocrystallites prepared by a combustion process, Mater. Lett., 58, 2730, 10.1016/j.matlet.2004.01.041
Lian, 2004, Synthesis of nanocrystalline NiO/doped CeO2 compound powders through combustion of citrate/nitrate gel, Mater. Lett., 58, 1183, 10.1016/j.matlet.2003.08.032
Lima, 2006, Nnaocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis, J. Eur. Ceram. Soc., 26, 1213, 10.1016/j.jeurceramsoc.2005.01.042
Purohit, 2006, Nanocrystalline ceria powders through citrate–nitrate combustion, J. Nanosci. Nanotechnol., 6, 209, 10.1166/jnn.2006.17932
Chen, 1997, Preparation of Nd-doped barium cerate through different routes, Solid State Ionics, 100, 63, 10.1016/S0167-2738(97)00265-8
Park, 1997, Preparation of La1−xSrxMnO3 powders by combustion of poly(ethylene glycol)–metal nitrate gel precursors, J. Mater. Sci., 32, 57, 10.1023/A:1018510828974
Gostovic, 2007, Three-dimensional reconstruction of porous LSCF cathodes, Electrochem. Solid State Lett., 10, B214, 10.1149/1.2794672