Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach

Journal of the European Ceramic Society - Tập 29 - Trang 439-450 - 2009
F. Deganello1, G. Marcì2, G. Deganello1,3
1Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
2Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
3Dipartimento di Chimica Inorganica e Analitica “S. Cannizzaro”, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy

Tài liệu tham khảo

Patil, 2002, Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci., 6, 507, 10.1016/S1359-0286(02)00123-7 Jain, 1981, A new approach to thermochemical calculations of condensed fuel–oxidizer mixtures, Combust. Flame, 40, 71, 10.1016/0010-2180(81)90111-5 Hwang, 2006, Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route, Mater. Sci. Eng. B, 132, 229, 10.1016/j.mseb.2006.01.021 Mukasyan, 2007, Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 31, 1789, 10.1016/j.proci.2006.07.052 Tyagi, 2006, A visit to the fascinating world of nano-ceramics powders via solution-combustion, Ind. J. Pure Appl. Phys., 44, 113 Chen, 2006, A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis, Mater. Lett., 60, 57, 10.1016/j.matlet.2005.07.088 Bedekar, 2007, Nanocrystalline electroceramics by combustion method, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 321, 10.1080/15533170701385739 Xu, 2004, Citrate method synthesis, characterization and mixed electronic–ionic conduction properties of La0.6Sr0.4Fe0.2Co0.8O3 perovskite-type complex oxides, Scr. Mater., 50, 165, 10.1016/j.scriptamat.2003.09.008 Majid, 2005, Preparation of SrFeO2.85 perovskite using a citric acid assisted Pechini-type method, J. Alloys Compd., 398, 48, 10.1016/j.jallcom.2005.02.023 Palmisano, 2006, High catalytic activity of SCS-synthesized ceria towards diesel soot combustion, Appl. Catal. B: Environ., 69, 85, 10.1016/j.apcatb.2006.06.002 Carvalho, 1997, New preparation method of Lan+1NinO3n+1-δ (n=2, 3), J. Mater. Chem., 7, 2107, 10.1039/a702424j Marinsek, 2002, Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis, J. Power Sources, 106, 178, 10.1016/S0378-7753(01)01056-4 Chakroborty, 2002, Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique, Mater. Lett., 57, 862, 10.1016/S0167-577X(02)00886-8 Mali, 2004, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method, Ceram. Int., 30, 1979, 10.1016/j.ceramint.2003.12.178 Hernandez, 2005, The role of the synthesis route to obtain densified TiO2-doped alumina ceramics, J. Eur. Ceram. Soc., 25, 663, 10.1016/j.jeurceramsoc.2004.01.013 Pechini, M., US Patent, 3,330,697; 1967. Epifani, 2007, Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes, J. Eur. Ceram. Soc., 27, 115, 10.1016/j.jeurceramsoc.2006.04.084 Erri, 2004, Oxidizer–fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate-model fuels, Ind. Eng. Chem. Res., 43, 3092, 10.1021/ie030822f Hwang, 2004, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Mater. Sci. Eng. B, 111, 49, 10.1016/j.mseb.2004.03.023 Li, 2002, Combustion synthesis of γ-lithium aluminate by using various fuels, J. Nucl. Mater., 300, 82, 10.1016/S0022-3115(01)00710-3 Wu, 2005, Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni–Zn ferrite, Mater. Sci. Eng. B, 123, 227, 10.1016/j.mseb.2005.08.005 Mukasyan, 2001, Perovskite membranes by aqueous combustion synthesis: synthesis and properties, Sep. Purif. Technol., 25, 117, 10.1016/S1383-5866(01)00096-X Hosseini Vajargah, 2007, Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate–citrate gel, J. Alloys Compd., 430, 339, 10.1016/j.jallcom.2006.05.023 Hwang, 2001, Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol–gel method at low temperature, J. Power Sources, 101, 86, 10.1016/S0378-7753(01)00657-7 Wu, 2006, Effect of pH on synthesis and properties of perovskite oxide via a citrate process, AlChE J., 52, 769, 10.1002/aic.10664 Yue, 2004, Synthesis of nanocrystalline ferrites by sol–gel combustion process: the influence of pH value of solution, J. Magn. Magn. Mater., 270, 216, 10.1016/j.jmmm.2003.08.025 Cannas, 2006, CoFe2O4 nanocrystalline powders prepared by citrate–gel methods: synthesis, structure and magnetic properties, J. Nanopartic. Res., 8, 255, 10.1007/s11051-005-9028-7 Xu, 2006, Influence of pH on characteristics of BaFe12O19 powder prepared by sol–gel auto-combustion, J. Magn. Magn. Mater., 301, 383, 10.1016/j.jmmm.2005.07.014 Peng, 2006, Effect of acidity on the glycine–nitrate combustion synthesis of nanocrystalline alumina powder, Mater. Res. Bull., 41, 1638, 10.1016/j.materresbull.2006.02.026 Civera, 2003, Combustion synthesis of perovskite-type catalysts for natural gas combustion, Catal. Today, 83, 199, 10.1016/S0920-5861(03)00220-7 Burgos-Montes, 2006, Influence of combustion aids on suspension combustion synthesis of mullite powders, J. Eur. Ceram. Soc., 26, 3365, 10.1016/j.jeurceramsoc.2005.08.006 Biamino, 2004, Combustion synthesis of lanthanum chromite starting from water solutions: investigation of process mechanism by DTA-TGA-MS, J. Eur. Ceram. Soc., 24, 3021, 10.1016/j.jeurceramsoc.2003.10.005 Chen, 2006, A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis, Mater. Sci. Eng. B, 133, 151, 10.1016/j.mseb.2006.06.020 Chandramouli, 1999, Combustion synthesis of thoria—a feasibility study, J. Nucl. Mater, 265, 255, 10.1016/S0022-3115(98)00688-6 Poth, 2000, Combustion-synthesis of SrTiO3. Part I. Synthesis and properties of the ignition products, J. Eur. Ceram. Soc., 20, 707, 10.1016/S0955-2219(99)00190-9 Deganello, 2007, Cathode performance of nanostructured La1−aSraCo1−bFebO3−x on a Ce0.8Sm0.2O2 electrolyte prepared by citrate–nitrate autocombustion, J. Electrochem. Soc., 154, A89, 10.1149/1.2400611 Deganello, 2006, Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates, J. Solid State Chem., 179, 3406, 10.1016/j.jssc.2006.06.027 Longo, 2006, Local environment of yttrium in Y-doped barium cerate compounds, Chem. Mater., 18, 5782, 10.1021/cm0615018 Giannici, 2007, Local environment of barium, cerium and yttrium in BaCe1−xYxO3-δ ceramic protonic conductors, Solid State Ionics, 178, 587, 10.1016/j.ssi.2007.01.015 Takeuchi, 2000, The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping, Solid State Ionics, 138, 63, 10.1016/S0167-2738(00)00771-2 Suksamai, 2007, Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC, Solid State Ionics, 178, 627, 10.1016/j.ssi.2007.02.003 McCusker, 1999, Rietveld refinement guidelines, J. Appl. Cryst., 32, 36, 10.1107/S0021889898009856 Larson, 1998 Brunauer, 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023 Barret, 1951, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373, 10.1021/ja01145a126 Hwang, 2004, Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method, Mater. Sci. Eng. B, 111, 197, 10.1016/S0921-5107(04)00203-X Guo, 2006, Synthesis and properties of La0.7Sr0. 3MnO3 cathode by gel combustion, Mater. Lett., 60, 261, 10.1016/j.matlet.2005.08.027 Smith, 1975, 2 Chick, 1994, Glycine–nitrate synthesis of a ceramic–metal composite, Nanostruct. Mater., 4, 603, 10.1016/0965-9773(94)90070-1 Bhaduri, 1996, Auto ignition processing of nanocrystalline α-Al2O3, Nanostruct. Mater., 7, 487, 10.1016/0965-9773(96)00030-X Jung, 2005, Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere, Mater. Lett., 59, 2426, 10.1016/j.matlet.2005.03.021 Petrov, 1995, Solid State Ionics, 80, 189, 10.1016/0167-2738(95)00114-L Singh, 2007, Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process, Ceram. Int., 33, 1463, 10.1016/j.ceramint.2006.05.021 Li, 2008, Nanostructured Nd:YAG powders via gel combustion: the influence of citrate-to-nitrate ratio, Ceram. Int., 34, 141, 10.1016/j.ceramint.2006.09.002 Azadmanjiri, 2006, The effects of pH and citric acid concentration on the characteristics of nanocrystalline NiFe2O4 powder synthesized by a sol–gel autocombustion method, Phys. Met. Metallogr., 102, S21, 10.1134/S0031918X06140055 Xu, 2006, Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid–nitrate low-temperature combustion process, J. Power Sources, 163, 409, 10.1016/j.jpowsour.2006.09.021 Zhang, 2004, Antimony-doped tin oxide nanocrystallites prepared by a combustion process, Mater. Lett., 58, 2730, 10.1016/j.matlet.2004.01.041 Lian, 2004, Synthesis of nanocrystalline NiO/doped CeO2 compound powders through combustion of citrate/nitrate gel, Mater. Lett., 58, 1183, 10.1016/j.matlet.2003.08.032 Lima, 2006, Nnaocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis, J. Eur. Ceram. Soc., 26, 1213, 10.1016/j.jeurceramsoc.2005.01.042 Purohit, 2006, Nanocrystalline ceria powders through citrate–nitrate combustion, J. Nanosci. Nanotechnol., 6, 209, 10.1166/jnn.2006.17932 Chen, 1997, Preparation of Nd-doped barium cerate through different routes, Solid State Ionics, 100, 63, 10.1016/S0167-2738(97)00265-8 Park, 1997, Preparation of La1−xSrxMnO3 powders by combustion of poly(ethylene glycol)–metal nitrate gel precursors, J. Mater. Sci., 32, 57, 10.1023/A:1018510828974 Gostovic, 2007, Three-dimensional reconstruction of porous LSCF cathodes, Electrochem. Solid State Lett., 10, B214, 10.1149/1.2794672