Models of SHS: An overview

A. S. Rogachev1, F. Baras2
1Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow, Russia
2Institute Carnot de Bourgogne, UMR 5209 CNRS, Université de Bourgogne, France

Tóm tắt

The theoretical models of SHS based on lamellar or cellular approximations of the heterogeneous reactive media are comparatively analyzed. It is shown that the ratio of the reaction time to the characteristic time of heat transfer between particles is a decisive parameter for the combustion wave propagation. When the time of reaction is shorter than the time of heat exchange, the combustion occurs in a discrete mode; in the opposite case, a quasi-homogeneous combustion mode occurs. Development of the discrete cellular model does not discard the quasi-homogeneous approach but markedly extends the scope of combustion theory. This extension enables explanation of many old and new experimental results that could not be rationalized within the framework of homogeneous theory.

Tài liệu tham khảo

Merzhanov, A.G. and Borovinskaya, I.P., Self-Propagating High-Temperature Synthesis of Inorganic Compounds, Dok. Akad. Nauk SSSR, 1972, vol. 204, no. 2, pp. 366–369. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion Synthesis of Advanced Materials: Principles and Applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226. Merzhanov, A.G., The Theory of Stable Homogeneous Combustion of Condensed Substances, Combust. Flame, 1969, vol. 13, pp. 143–156. Aldushin, A.P., Merzhanov, A.G., and Khaikin, B.I., Some Peculiarities of Condensed System Combustion with Refractory Reaction Products, Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 5, pp. 1139–1142. Aldushin, A.P. and Khaikin, B.I., On Combustion Theory of Mixed Systems Forming Condensed Reaction Products, Fiz. Goreniya Vzryva, 1974, vol. 10, no. 3, pp. 313–323. Khaikin, B.I., On Combustion Processes Theory in Heterogeneous Condensed Media, in Protsessy Goreniya v Khimicheskoi Tekhnologii i Metallurgii (Combustion Processes in Chemical Technology and Metallurgy), Chernogolovka, 1975, pp. 227–244. Hard, A.P. and Phung, P.V., Propagation of Gasless Reactions in Solids. I. Analytical Study of Exothermic Intermetallic Reaction Rates, Combust. Flame, 1973, vol. 21, no. 1, pp. 77–89. Barbee, T.W. and Weihs, T., Ignitable Heterogeneous Stratified Structure for the Propagating of an Internal Exothermic Chemical Reaction Along an Expanding Wavefront and Method of Making Same, US Patent 5 538 795, 1996. Mann, A.B., Gavens, A.J., Reiss, M.E., van Heerden, D., Bao, G., and Weihs, T.P., Modeling and Characterizing the Propagation Velocity of Exothermic Reactions in Multilayer Foils, J. Appl. Phys., 1997, vol. 82, no. 3, pp. 1178–1188. Shkiro, V.M. and Borovinskaya, I.P., Capillary Flow of Liquid Metal at Burning of the Titanium-Carbon Mixtures, Fiz. Goreniya Vzryva, 1976, vol. 12, no. 6, pp. 945–948. Nekrasov, E.A., Maksimov, Yu.M., Ziatdinov, M.Kh., and Shteinberg, A.S., Capillary Spreading Influence on the Combustion Wave Propagation in Gasless Systems, Fiz. Goreniya Vzryva, 1978, vol. 14, no. 5, pp. 26–33. Rogachev, A.S., Mukas’yan, A.S., and Merzhanov, A.G., Structural Transformations at Gasless Combustion of Titanium-Carbon and Titanium-Boron Systems, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 6, pp. 1425–1428. Knyazik, V.A., Merzhanov, A.G., and Shteinberg, A.S., On Combustion Mechanism of Titanium-Carbon System, Dokl. Akad. Nauk SSSR, 1988, vol. 301, no. 4, pp. 899–902. Merzhanov, A.G., Rogachev, A.S., Mukas’yan, A.S., and Khusid, B.M., Makrokinetics of Structure Transformations during Gasless Combustion of Titanium-Carbon Powder Mixtures, Fiz. Goreniya Vzryva, 1990, vol. 26, no. 1, pp. 104–114. Merzhanov, A.G. and Rogachev, A.S., Structural Macrokinetics of SHS Processes, Pure Appl. Chem., 1992, vol. 64, no. 7, pp. 941–953. Rogachev, A.S., Varma, A., and Merzhanov, A.G., The Mechanism of Self-Propagating High-Temperature Synthesis of Nickel Aluminides. I. Formation of Product Microstructure in a Combustion Wave, Int. J. SHS, 1993, vol. 2, no. 1, pp. 25–38. Rogachev, A.S., Shugaev, V.A., Khomenko, I.O., Varma, A., and Kachelmyer, C.R., On the Mechanism of Structure Formation during Combustion Synthesis of Titanium Silicides, Combust. Sci. Technol., 1995, vol. 109, pp. 53–70. Shteinberg, A.S., Shcherbakov, V.A., and Munir, Z.A., Kinetics of Combustion in the Layered Ni-Al System, Combust. Sci. Technol., 2001, vol. 24, pp. 1–24. Aleksandrov, V.V., Gruzdev, V.A., and Kovalenko, Yu.A., Thermal Conduction of Some SHS Systems Based on Aluminum, Fiz. Goreniya Vzryva, 1985, vol. 21, no. 1, pp. 98–104. Emel’yanov, A.N., Shkiro V.M., Rogachev A.S., and Kochetov, N.A., Thermal Conductivity of Powder Mixtures for Gasless Combustion, Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., 2005, no. 1, pp. 60–63. Levashov, E.A., Bogatov, Yu.V., and Milovidov, A.A., Macrokinetics and Mechanism of a Self-Propagating High-Temperature Synthesis Process in Titanium-Carbon-Based Systems, Fiz. Goreniya Vzryva, 1991, vol. 27, no. 1, pp. 88–93. Merzhanov, A.G., Mukas’yan, A.S., Rogachev, A.S., Sytschev, A.E., Hwang, S., and Varma, A., Microstructure of the Combustion Front in Heterogeneous Gasless Systems: Combustion in the 5Ti + 3Si System, Comb. Explos. Shock Waves, 1996, vol. 32, no. 6, pp. 68–81 (Engl. transl. of Fiz. Goreniya Vzryva). Rogachev, A.S., Mukasyan, A.S., and Varma, A., Microstructure of Self-Propagating Waves of Exothermal Reactions in Heterogeneous Media, Dokl. Ross. Akad. Nauk, 1999, vol. 366, no. 6, pp. 777–780. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 11 053–11 058. Mukasyan, A.S., Rogachev, A.S., and Varma, A., Microstructural Mechanism of Combustion in Heterogeneous Reaction Media, Proc. Combust. Inst., 2000, vol. 28, pp. 1413–1419. Kochetov, N.A., Rogachev, A.S., and Merzhanov, A.G., Causes of Thermal Heterogeneity of SHS Wave, Dokl. Akad. Nauk, 2003, vol. 389, no. 1, pp. 65–67. Mukasyan, A.S., Rogachev, A.S., Mercedes, M., and Varma, A., Microstructural Correlations between Reaction Medium and Combustion Wave Propagation in Heterogeneous Systems, Chem. Eng. Sci., 2004, vol. 59, pp. 5099–5105. Merzhanov, A.G., Propagation of Solid Flame in a Model Heterogeneous System, Dokl. Ross. Akad. Nauk, 1997, vol. 353, pp. 504–507. Krishenik, P.M., Merzhanov, A.G., and Shkadinskii, K.G., Unsteady-State Conditions for Conversion of Multilayer Heterogeneous Systems, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 3, pp. 70–79. Krishenik, P.M., Merzhanov, A.G., and Shkadinskii, K.G., Conditions for Frontal Transformation of High-Energy Structured Heterogeneous Systems, Fiz. Goreniya Vzryva, 2005, vol. 41, no. 2, pp. 51–61. Krishenik, P.M. and Shkadinskii, K.G., Stability of Thermal Front with Heat Conductivity Dependent on Temperature, Int. J. SHS, 2005, vol. 13, no. 4, pp. 253–261. Vadchenko, S.G. and Merzhanov, A.G., Heterogeneous Model of Flame Propagation, Dokl. Akad. Nauk, 1997, vol. 352, no. 4, pp. 487–489. Vadchenko, S.G., Gasless Combustion of a Model Multilayer System: Combustion of Disks with a Gap, Fiz. Goreniya Vzryva, 2001, vol. 37, no. 2, pp. 42–50. Vadchenko, S.G., Gasless Combustion of a Model Multilayer System: Combustion of Disks without Gaps, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 1, pp. 49–53. Seplyarskii, B.S. and Vadchenko, S.G., Role of Convective Heat Transfer in Gasless Combustion by the Example of Combustion of the Ti-C System, Dokl. Phys. Chem., 2004, vol. 398, no. 1, pp. 203–207. Kochetov, N.A., Rogachev, A.S., Emel’yanov, A.N., Illarionova, E.V., and Shkiro, V.M., Microstructure of Heterogeneous Mixtures for Gasless Combustion, Fiz. Goreniya Vzryva, 2004, vol. 40, no. 5, pp. 74–80. Doronin, V.N., Itin, V.I., and Barelko, V.V., Non-Thermal Self-Activation Mechanism of Interaction Process for Solid Reagents Mixture in Combustion Wave, Dokl. Akad. Nauk SSSR, 1986, vol. 286, no. 5, pp. 1155–1159. Rogachev, A.S., Microheterogeneous Mechanism of Gasless Combustion, Combust. Explos. Shock Waves, 2003, vol. 39, no. 2, pp. 150–158 (Engl. transl. of Fiz. Goreniya Vzryva). Rogachev, A.S. and Merzhanov, A.G., Theory of Relay-Race Propagation of a Combustion Wave in Heterogeneous Systems, Dokl. Akad. Nauk, 1999, vol. 365, no. 6, pp. 788–791. Rogachev, A.S., Kochetov, N.A., Kurbatkina, V.V., Levashov, E.A., Grinchuk, P.S., Rabinovich, O.S., Sachkova, N.V., and Bernar, F., Microstructural Aspects of Gasless Combustion of Mechanically Activated Mixtures. I. High-Speed Microscale Video Recording of a Ni + Al Composition, Fiz. Goreniya Vzryva, 2006, vol. 42, no. 4, pp. 61–70. Machviladze, G.M. and Novozilov, B.V., Zh. Prikl. Mekh. Tekh. Fiz., 1971, vol. 5, no. 1, p. 51. Matkowsky, B.J. and Sivashinsky, G.I., SIAM J. Appl. Math., 1978, vol. 35, p. 465. Shkadinskii, K.G., Khaikin, B.I., and Merzhanov, A.G., Propagation of a Pulsating Exothermic Reaction Front in the Condensed Phase, Combust. Expl. Shock Waves, 1971, vol. 7, no. 1, pp. 15–22. Shkiro, V.M. and Borovinskaya, I.P., Combustion Regularities of Titanium-Carbon Mixtures, in Protsessy goreniya v khimicheskoi tekhnologii i metallurgii (Combustion Processes in Chemical Technology and Metallurgy), Merzhanov, A.G., Ed., Chernogolovka: Izd. Inst. Chem. Phys., 1975, pp. 253–258. Kirdyashkin, A.I., Maksimov, Yu.M., and Nekrasov, E.A., Mechanism of Titanium Interaction with Carbon in Combustion Wave, Fiz. Goreniya Vzryva, 1981, vol. 17, no. 4, pp. 33–36. Dunmead, S.D., Readey, D.W., Semler, C.E., and Holt, J.B., Kinetics of Combustion Synthesis in the Ti-C and Ti-C-Ni Systems, J. Am. Ceram. Soc., 1989, vol. 72, pp. 2318–2324. Borovinskaya, I.P., Merzhanov, A.G., Novikov, N.P., and Filonenko, A.K., Gasless Combustion of Powder Mixtures of Transition Metals with Boron, Fiz. Goreniya Vzryva, 1974, vol. 10, no. 1, pp. 4–15. Azatyan, T.S., Mal’tsev, V.M., Merzhanov, A.G., and Seleznev, V.A., Propagation Mechanism of Combustion Wave in Titanium-Boron Mixtures, Fiz. Goreniya Vzryva, 1980, vol. 16, no. 2, pp. 37–42. Dunmead, S.D., Munir, Z.A., and Holt, J.B., Temperature Profile Analysis in Combustion Synthesis: II. Experimental Observations, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 180–188. Andreev, V.A., Mal’tsev, V.M., and Seleznev, V.A., Investigation of Hafnium-Boron Combustion by Optical Pyrometry, Fiz. Goreniya Vzryva, 1980, vol. 16, no. 4, pp. 18–23. Azatyan, T.S., Mal’tsev, V.M., Merzhanov, A.G., and Seleznev, V.A., Some Peculiarities of Titanium-Silicon Mixtures Burning, Fiz. Goreniya Vzryva, 1979, vol. 15, no. 1, pp. 43–49. Naiborodenko, Yu.S. and Itin, V.I., Gasless Combustion of Powder Mixtures of Different Metals. I. Peculiarities and Combustion Mechanism, Fiz. Goreniya Vzryva, 1975, vol. 11, no. 3, pp. 343–353. Itin, V.I., Bratchikov, A.D., and Lepinskikh, A.V., Phase Transition at Combustion of Copper-Aluminum Powder Mixtures, Fiz. Goreniya Vzryva, 1981, vol. 17, no. 5, pp. 31–34. Itin, V.I. and Naiborodenko, Yu.S., Vysokotemperaturnyi sintez intermetallicheskikh soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Tomsk: Izd. Tomsk. Univ., 1989.