Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases

Cell Reports Medicine - Tập 4 - Trang 100881 - 2023
Jiawei Guo1,2, Fuxiao Wang1, Yan Hu1, Ying Luo2, Yan Wei1, Ke Xu1, Hao Zhang1, Han Liu1, Lumin Bo3, Shunli Lv3, Shihao Sheng2, Xinchen Zhuang2, Tao Zhang2, Can Xu3, Xiao Chen2, Jiacan Su1,2,4
1Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
2Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
3Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
4Organoid Research Center, Shanghai University, Shanghai 200444, China

Tài liệu tham khảo

Hardy, 2009, Bone loss in inflammatory disorders, J. Endocrinol., 201, 309, 10.1677/JOE-08-0568

Merlotti, 2022, Bone fragility in gastrointestinal disorders, Int. J. Mol. Sci., 23, 2713, 10.3390/ijms23052713

Liu, 2021, The microbiome in inflammatory bowel diseases: from pathogenesis to therapy, Nat. Nanotechnol., 16, 331, 10.1038/s41565-020-00818-8

Kaplan, 2015, The global burden of IBD: from 2015 to 2025, Nat. Rev. Gastroenterol. Hepatol., 12, 720, 10.1038/nrgastro.2015.150

Ye, 2013, Review of inflammatory bowel disease in China, Sci. World J., 2013, 10.1155/2013/296470

Tilg, 2008, Gut, inflammation and osteoporosis: basic and clinical concepts, Gut, 57, 684, 10.1136/gut.2006.117382

Rodríguez-Bores, 2007, Basic and clinical aspects of osteoporosis in inflammatory bowel disease, World J. Gastroenterol., 13, 6156, 10.3748/wjg.v13.i46.6156

Szafors, 2018, Risk of fracture and low bone mineral density in adults with inflammatory bowel diseases. A systematic literature review with meta-analysis, Osteoporos. Int., 29, 2389, 10.1007/s00198-018-4586-6

Lamb, 2019, British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults, Gut, 68, s1, 10.1136/gutjnl-2019-318484

Oliveira, 2017, Diagnosis and management of inflammatory bowel disease in children, BMJ, 357, j2083, 10.1136/bmj.j2083

Chen, 2018, RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation, Bone Res., 6, 34, 10.1038/s41413-018-0035-6

Hu, 2021, RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss, EMBO Rep., 22, 10.15252/embr.202152481

Metzger, 2017, Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover, J. Bone Miner. Res., 32, 802, 10.1002/jbmr.3027

Al Saedi, 2022, Characterization of skeletal phenotype and associated mechanisms with chronic intestinal inflammation in the winnie mouse model of spontaneous chronic colitis, Inflamm. Bowel Dis., 28, 259, 10.1093/ibd/izab174

Khosla, 2017, Osteoporosis treatment: recent developments and ongoing challenges, Lancet Diabetes Endocrinol., 5, 898, 10.1016/S2213-8587(17)30188-2

Li, 2020, Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss, Sci. Adv., 6, eabb7135, 10.1126/sciadv.abb7135

Estell, 2021, Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis, Nat. Rev. Endocrinol., 17, 31, 10.1038/s41574-020-00426-5

Bernstein, 2014, What is the role for bisphosphonates in IBD?, Gut, 63, 1369, 10.1136/gutjnl-2013-306141

Wang, 2020, New insight into unexpected bone formation by denosumab, Drug Discov. Today, 25, 1919, 10.1016/j.drudis.2020.09.001

Narayanan, 2018, Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease, Faseb. J., 32, 4848, 10.1096/fj.201800178R

Chen, 2020, Gli1(+) cells couple with type H vessels and are required for type H vessel formation, Stem Cell Rep., 15, 110, 10.1016/j.stemcr.2020.06.007

Salhotra, 2020, Mechanisms of bone development and repair, Nat. Rev. Mol. Cell Biol., 21, 696, 10.1038/s41580-020-00279-w

Leppkes, 2020, Cytokines in inflammatory bowel diseases - update 2020, Pharmacol. Res., 158, 10.1016/j.phrs.2020.104835

Yang, 2013, Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis, J. Bone Miner. Res., 28, 559, 10.1002/jbmr.1798

Russell, 2021, IL-17A and TNF modulate normal human spinal entheseal bone and soft tissue mesenchymal stem cell osteogenesis, adipogenesis, and stromal function, Cells, 10, 341, 10.3390/cells10020341

Tevlin, 2017, Pharmacological rescue of diabetic skeletal stem cell niches, Sci. Transl. Med., 9, 10.1126/scitranslmed.aag2809

Xue, 2021, Recent advances in design of functional biocompatible hydrogels for bone tissue engineering, Adv. Funct. Mater., 31, 10.1002/adfm.202009432

Xue, 2022, Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering, Bioact. Mater., 12, 327, 10.1016/j.bioactmat.2021.10.029

Song, 2019, Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes, Nano Lett., 19, 3040, 10.1021/acs.nanolett.9b00287

Esposito, 2019, Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis, Nat. Cell Biol., 21, 627, 10.1038/s41556-019-0309-2

Wang, 2020, HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice, Clin. Transl. Med., 10, e113, 10.1002/ctm2.113

Holgersen, 2015, Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice, Inflamm. Bowel Dis., 21, 257, 10.1097/MIB.0000000000000269

Seul, 2011, Osteoblast-specific expression of MEF induces osteopenia through downregulation of osteoblastogenesis and upregulation of osteoclastogenesis, J. Bone Miner. Res., 26, 341, 10.1002/jbmr.208

Baek, 2012, Myeloid Elf-1-like factor stimulates adipogenic differentiation through the induction of peroxisome proliferator-activated receptor gamma expression in bone marrow, J. Cell. Physiol., 227, 3603, 10.1002/jcp.24064

Chang, 2013, NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation, Proc. Natl. Acad. Sci. USA, 110, 9469, 10.1073/pnas.1300532110

Compston, 2019, Lancet, 393, 364, 10.1016/S0140-6736(18)32112-3

Komatsu, 2022, Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions, Nat. Rev. Rheumatol., 18, 415, 10.1038/s41584-022-00793-5

Ke, 2019, Mechanisms underlying bone loss associated with gut inflammation, Int. J. Mol. Sci., 20, 6323, 10.3390/ijms20246323

Zouali, 2021, B lymphocytes, the gastrointestinal tract and autoimmunity, Autoimmun. Rev., 20, 10.1016/j.autrev.2021.102777

Kaplan, 2021, The four epidemiological stages in the global evolution of inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol., 18, 56, 10.1038/s41575-020-00360-x

Zhou, 2020, Bone mineral density is negatively correlated with ulcerative colitis: a systematic review and meta-analysis, Clin. Transl. Med., 9, 18, 10.1186/s40169-020-00270-0

Haschka, 2016, High-resolution quantitative computed tomography demonstrates structural defects in cortical and trabecular bone in IBD patients, J. Crohns Colitis, 10, 532, 10.1093/ecco-jcc/jjw012

Ciucci, 2015, Bone marrow Th17 TNFalpha cells induce osteoclast differentiation, and link bone destruction to IBD, Gut, 64, 1072, 10.1136/gutjnl-2014-306947

Chen, 2020, A selected small molecule prevents inflammatory osteolysis through restraining osteoclastogenesis by modulating PTEN activity, Clin. Transl. Med., 10, e240, 10.1002/ctm2.240

Meirow, 2022, Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss, Bone Res., 10, 36, 10.1038/s41413-022-00206-z

Redlich, 2012, Inflammatory bone loss: pathogenesis and therapeutic intervention, Nat. Rev. Drug Discov., 11, 234, 10.1038/nrd3669

Silvennoinen, 1996, Increased degradation of type I collagen in patients with inflammatory bowel disease, Gut, 38, 223, 10.1136/gut.38.2.223

Ludvigsson, 2019, Fracture risk in patients with inflammatory bowel disease: a nationwide population-based cohort study from 1964 to 2014, Am. J. Gastroenterol., 114, 291, 10.14309/ajg.0000000000000062

Ahn, 2022, High risk of fractures within 7 Years of diagnosis in asian patients with inflammatory bowel diseases, Clin. Gastroenterol. Hepatol., 20, e1022, 10.1016/j.cgh.2021.06.026

Uluçkan, 2016, Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts, Sci. Transl. Med., 8, 330ra37, 10.1126/scitranslmed.aad8996

Munir, 2017, Adipogenic differentiation of mesenchymal stem cells alters their immunomodulatory properties in a tissue-specific manner, Stem Cell., 35, 1636, 10.1002/stem.2622

Osorio, 2022, Inflammatory stimuli alter bone marrow composition and compromise bone health in the malnourished host, Front. Immunol., 13, 10.3389/fimmu.2022.846246

da Silva, 2016, Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis, Obesity, 24, 2522, 10.1002/oby.21660

Noack, 2015, Prostaglandin E2 impairs osteogenic and facilitates adipogenic differentiation of human bone marrow stromal cells, Prostaglandins Leukot. Essent. Fatty Acids, 94, 91, 10.1016/j.plefa.2014.11.008

Tian, 2022, Skeletal muscle mitoribosomal defects are linked to low bone mass caused by bone marrow inflammation in male mice, J. Cachexia Sarcopenia Muscle, 13, 1785, 10.1002/jcsm.12975

Li, 2018, PPAR-Gamma and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively, Curr. Stem Cell Res. Ther., 13, 185, 10.2174/1574888X12666171012141908

Soós, 2022, Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases, Nat. Rev. Rheumatol., 18, 249, 10.1038/s41584-022-00764-w

Jiang, 2022, Engineered extracellular vesicles for bone therapy, Nano Today, 44, 10.1016/j.nantod.2022.101487

Wirtz, 2017, Chemically induced mouse models of acute and chronic intestinal inflammation, Nat. Protoc., 12, 1295, 10.1038/nprot.2017.044

Lee, 2014, TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo, Proc. Natl. Acad. Sci. USA, 111, 16766, 10.1073/pnas.1416121111