Disruption of hematopoiesis attenuates the osteogenic differentiation capacity of bone marrow stromal cells
Tóm tắt
The homeostasis of mesenchymal stem cells (MSCs) is modulated by both their own intracellular molecules and extracellular milieu signals. Hematopoiesis in the bone marrow is maintained by niche cells, including MSCs, and it is indispensable for life. The role of MSCs in maintaining hematopoietic homeostasis has been fully elucidated. However, little is known about the mechanism by which hematopoietic cells reciprocally regulate niche cells. The present study aimed to explore the close relationship between MSCs and hematopoietic cells, which may be exploited for the development of new therapeutic strategies for related diseases. In this study, we isolated cells from the offspring of Tie2Cre + and Ptenflox/flox mice. After cell isolation and culture, we investigated the effect of hematopoietic cells on MSCs using various methods, including flow cytometry, adipogenic and osteogenic differentiation analyses, quantitative PCR, western bloting, and microCT analysis. Our results showed that when the phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene was half-deleted in hematopoietic cells, hematopoiesis and osteogenesis were normal in young mice; the frequency of erythroid progenitor cells in the bone marrow gradually decreased and osteogenesis in the femoral epiphysis weakened as the mice grew. The heterozygous loss of Pten in hematopoietic cells leads to the attenuation of osteogenic differentiation and enhanced adipogenic differentiation of MSCs in vitro. Co-culture with normal hematopoietic cells rescued the abnormal differentiation of MSCs, and in contrast, MSCs co-cultured with heterozygous null Pten hematopoietic cells showed abnormal differentiation activity. Co-culture with erythroid progenitor cells also revealed them to play an important role in MSC differentiation. Our data suggest that hematopoietic cells function as niche cells of MSCs to balance the differentiation activity of MSCs and may ultimately affect bone development.