Obesity/Metabolic Syndrome and Diabetes Mellitus on Peri-implantitis
Tài liệu tham khảo
Ting, 2018, Peri-implantitis: a comprehensive overview of systematic reviews, J. Oral Implantol., 44, 225, 10.1563/aaid-joi-D-16-00122
Matarazzo, 2018, Prevalence, extent and severity of peri-implant diseases. A cross-sectional study based on a university setting in Brazil, J. Periodontal Res., 53, 910, 10.1111/jre.12582
Buser, 2017, Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions, Periodontol. 2000, 73, 7, 10.1111/prd.12185
Renvert, 2018, Treatment of pathologic peri-implant pockets, Periodontol. 2000, 76, 180, 10.1111/prd.12149
Ootsuka, 2015, Increase in osteoclastogenesis in an obese Otsuka Long-Evans Tokushima fatty rat model, Mol. Med. Rep., 12, 3874, 10.3892/mmr.2015.3811
Tukel, 2019, Effects of metabolic syndrome on jawbones and bone metabolic markers in sucrose-fed rats, Odontology, 107, 457, 10.1007/s10266-019-00422-w
Daubert, 2015, Prevalence and predictive factors for peri-implant disease and implant failure: a cross-sectional analysis, J. Periodontol., 86, 337, 10.1902/jop.2014.140438
Elangovan, 2014, Body fat indices and biomarkers of inflammation: a cross-sectional study with implications for obesity and peri-implant oral health, Int. J. Oral Maxillofac. Implants, 29, 1429, 10.11607/jomi.3758
Vohra, 2018, Peri-implant parameters and C-reactive protein levels among patients with different obesity levels, Clin. Implant. Dent. Relat. Res., 20, 130, 10.1111/cid.12556
Glovaci, 2019, Epidemiology of diabetes mellitus and cardiovascular disease, Curr. Cardiol. Rep., 21, 21, 10.1007/s11886-019-1107-y
Guo, 2010, Factors affecting wound healing, J. Dent. Res., 89, 219, 10.1177/0022034509359125
Coelho, 2018, Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: a pilot study, J. Oral Maxillofac. Surg., 76, 1677, 10.1016/j.joms.2018.02.021
Hinton, 2015, Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running, Metabolism, 64, 905, 10.1016/j.metabol.2015.04.004
Pramojanee, 2014, Possible roles of insulin signaling in osteoblasts, Endocr. Res., 39, 144, 10.3109/07435800.2013.879168
Jiao, 2015, Diabetes and its effect on bone and fracture healing, Curr. Osteoporos. Rep., 13, 327, 10.1007/s11914-015-0286-8
Picke, 2019, Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties, Endocr. Connect., 8, R55, 10.1530/EC-18-0456
Stratton, 2000, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study, BMJ, 321, 405, 10.1136/bmj.321.7258.405
Giacco, 2010, Oxidative stress and diabetic complications, Circ. Res., 107, 1058, 10.1161/CIRCRESAHA.110.223545
Shu, 2012, Bone structure and turnover in type 2 diabetes mellitus, Osteoporos. Int., 23, 635, 10.1007/s00198-011-1595-0
Wu, 2015, Diabetes mellitus related bone metabolism and periodontal disease, Int. J. Oral Sci., 7, 63, 10.1038/ijos.2015.2
King, 2016, The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement, Arch. Osteoporos., 11, 10.1007/s11657-016-0284-1
Lubberts, 2003, IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance, J. Immunol., 170, 2655, 10.4049/jimmunol.170.5.2655
Takahashi, 2005, The potential role of interleukin-17 in the immunopathology of periodontal disease, J. Clin. Periodontol., 32, 369, 10.1111/j.1600-051X.2005.00676.x
Azuma, 2017, Diabetes increases interleukin-17 levels in periapical, hepatic, and renal tissues in rats, Arch. Oral Biol., 83, 230, 10.1016/j.archoralbio.2017.08.001
Honda, 2008, Elevated expression of IL-17 and IL-12 genes in chronic inflammatory periodontal disease, Clin. Chim. Acta, 395, 137, 10.1016/j.cca.2008.06.003
Gemmell, 2007, The role of T cells in periodontal disease: homeostasis and autoimmunity, Periodontol. 2000, 43, 14, 10.1111/j.1600-0757.2006.00173.x
Huang, 2009, IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling, Cell Death Differ., 16, 1332, 10.1038/cdd.2009.74
Bouillon, 1991, Diabetic bone disease, Calcif. Tissue Int., 49, 155, 10.1007/BF02556109
Marchand, 2012, Dental implants and diabetes: conditions for success, Diabetes Metab., 38, 14, 10.1016/j.diabet.2011.10.002
Lu, 2003, Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation, Endocrinology, 144, 346, 10.1210/en.2002-220072
Wang, 2010, High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway, Mol. Cell. Biochem., 338, 115, 10.1007/s11010-009-0344-6
Greco, 2015, The obesity of bone, Ther. Adv. Endocrinol. Metab., 6, 273, 10.1177/2042018815611004
Tepper, 2002, Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures, Circulation, 106, 2781, 10.1161/01.CIR.0000039526.42991.93
Wang, 2008, Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7, Proc. Natl. Acad. Sci. U. S. A., 105, 7738, 10.1073/pnas.0802857105
Chen, 2012, VEGF-induced vascular permeability is mediated by FAK, Dev. Cell, 22, 146, 10.1016/j.devcel.2011.11.002
Botolin, 2006, Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways, J. Cell. Biochem., 99, 411, 10.1002/jcb.20842
Fajardo, 2017, Is diabetic skeletal fragility associated with microvascular complications in bone?, Curr. Osteoporos. Rep., 15, 1, 10.1007/s11914-017-0341-8
Sena, 2013, Endothelial dysfunction - a major mediator of diabetic vascular disease, Biochim. Biophys. Acta, 1832, 2216, 10.1016/j.bbadis.2013.08.006
Mehra, 2014, Ceramide-activated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis, Am. J. Pathol., 184, 1562, 10.1016/j.ajpath.2014.01.009
Halcox, 2002, Prognostic value of coronary vascular endothelial dysfunction, Circulation, 106, 653, 10.1161/01.CIR.0000025404.78001.D8
Steinberg, 1997, Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation, J. Clin. Invest., 100, 1230, 10.1172/JCI119636
Dimmeler, 1999, Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation, Nature, 399, 601, 10.1038/21224
Kuboki, 2000, Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin, Circulation, 101, 676, 10.1161/01.CIR.101.6.676
Hu, 2018, Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes, Acta Biomater., 73, 470, 10.1016/j.actbio.2018.04.008
Rossi, 2017, Titanium-released from dental implant enhances pre-osteoblast adhesion by ROS modulating crucial intracellular pathways, J. Biomed. Mater. Res. A, 105, 2968, 10.1002/jbm.a.36150
Fernandes, 2014, Osteoblast adhesion dynamics: a possible role for ROS and LMW-PTP, J. Cell. Biochem., 115, 1063, 10.1002/jcb.24691
Manning, 2002, The protein kinase complement of the human genome, Science, 298, 1912, 10.1126/science.1075762
Zambuzzi, 2011, Intracellular signal transduction as a factor in the development of "smart" biomaterials for bone tissue engineering, Biotechnol. Bioeng., 108, 1246, 10.1002/bit.23117
Peppelenbosch, 2016, Systems medicine approaches for peptide array-based protein kinase profiling: progress and prospects, Expert Rev. Proteomics, 13, 571, 10.1080/14789450.2016.1187564
Marumoto, 2017, Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions, Bone, 103, 55, 10.1016/j.bone.2017.06.012
Milani, 2010, Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion, J. Cell. Biochem., 109, 957
Gemini-Piperni, 2014, Cellular behavior as a dynamic field for exploring bone bioengineering: a closer look at cell-biomaterial interface, Arch. Biochem. Biophys., 561, 88, 10.1016/j.abb.2014.06.019
Fernandes, 2018, Nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as prerequisite to ECM remodeling, Colloids Surf. B Biointerfaces, 163, 321, 10.1016/j.colsurfb.2017.12.049
Zambuzzi, 2011, Biological behavior of pre-osteoblasts on natural hydroxyapatite: a study of signaling molecules from attachment to differentiation, J. Biomed. Mater. Res. A, 97, 193, 10.1002/jbm.a.32933
da Costa Fernandes, 2018, Titanium-enriched medium drives low profile of ECM remodeling as a pre-requisite to pre-osteoblast viability and proliferative phenotype, J. Trace Elem. Med. Biol., 50, 339, 10.1016/j.jtemb.2018.07.015
Zambuzzi, 2009, On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways, J. Cell. Biochem., 108, 134, 10.1002/jcb.22236
Ribeiro, 2015, Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications, Mater. Sci. Eng. C Mater. Biol. Appl., 54, 196, 10.1016/j.msec.2015.05.012
da Costa Fernandes, 2018, Zirconia stimulates ECM-remodeling as a prerequisite to pre-osteoblast adhesion/proliferation by possible interference with cellular anchorage, J. Mater. Sci. Mater. Med., 29, 10.1007/s10856-018-6041-9
Fernandes, 2019, Modulatory effects of silibinin in cell behavior during osteogenic phenotype, J. Cell. Biochem., 120, 13413, 10.1002/jcb.28616
Discher, 2009, Growth factors, matrices, and forces combine and control stem cells, Science, 324, 1673, 10.1126/science.1171643
Guilak, 2009, Control of stem cell fate by physical interactions with the extracellular matrix, Cell Stem Cell, 5, 17, 10.1016/j.stem.2009.06.016
Marie, 2014, Integrin and cadherin signaling in bone: role and potential therapeutic targets, Trends Endocrinol. Metab., 25, 567, 10.1016/j.tem.2014.06.009
Baroncelli, 2019, Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: comparative kinome profile analysis, J. Cell. Physiol., 234, 2984, 10.1002/jcp.27116
Greenblatt, 2013, Mitogen-activated protein kinase pathways in osteoblasts, Annu. Rev. Cell Dev. Biol., 29, 63, 10.1146/annurev-cellbio-101512-122347
Wang, 2016, Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants, Colloids Surf. B Biointerfaces, 148, 440, 10.1016/j.colsurfb.2016.09.018
Zambuzzi, 2008, Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation, Cell. Physiol. Biochem., 22, 497, 10.1159/000185506
Zambuzzi, 2010, Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice, Biochimie, 92, 327, 10.1016/j.biochi.2010.01.002
Ma, 2014, The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces, Biomaterials, 35, 7259, 10.1016/j.biomaterials.2014.05.028
Hu, 2017, Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro, Acta Biomater., 61, 233, 10.1016/j.actbio.2017.06.020
Wang, 2015, Insulin improves osteogenesis of titanium implants under diabetic conditions by inhibiting reactive oxygen species overproduction via the PI3K-Akt pathway, Biochimie, 108, 85, 10.1016/j.biochi.2014.10.004
Ikpa, 2014, Cystic fibrosis: toward personalized therapies, Int. J. Biochem. Cell Biol., 52, 192, 10.1016/j.biocel.2014.02.008
Lee, 2007, Endocrine regulation of energy metabolism by the skeleton, Cell, 130, 456, 10.1016/j.cell.2007.05.047
Wei, 2014, Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation, J. Clin. Invest., 124, 1, 10.1172/JCI72323
Wei, 2015, An overview of the metabolic functions of osteocalcin, Curr. Osteoporos. Rep., 13, 180, 10.1007/s11914-015-0267-y
Lee, 2008, Reciprocal regulation of bone and energy metabolism, Trends Endocrinol. Metab., 19, 161, 10.1016/j.tem.2008.02.006
Lacombe, 2013, In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice, Mol. Metab., 2, 498, 10.1016/j.molmet.2013.08.004
Ferron, 2010, Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism, Cell, 142, 296, 10.1016/j.cell.2010.06.003
Ferron, 2012, Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice, Bone, 50, 568, 10.1016/j.bone.2011.04.017
Wei, 2014, Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a, Diabetes, 63, 1021, 10.2337/db13-0887
Chrcanovic, 2014, Diabetes and oral implant failure: a systematic review, J. Dent. Res., 93, 859, 10.1177/0022034514538820
Dreyer, 2018, Epidemiology and risk factors of peri-implantitis: a systematic review, J. Periodontal Res., 53, 657, 10.1111/jre.12562
Xiao, 2017, Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity, Cell Host Microbe, 22, 120, 10.1016/j.chom.2017.06.014
Hultin, 2002, Microbiological findings and host response in patients with peri-implantitis, Clin. Oral Implants Res., 13, 349, 10.1034/j.1600-0501.2002.130402.x
Lafaurie, 2017, Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review, J. Periodontol., 88, 1066, 10.1902/jop.2017.170123
Schwarz, 2018, Peri-implantitis, J. Periodontol., 89, S267, 10.1002/JPER.16-0350
Papi, 2018, Peri-implant diseases and metabolic syndrome components: a systematic review, Eur. Rev. Med. Pharmacol. Sci., 22, 866
Naguib, 2004, Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation, J. Invest. Dermatol., 123, 87, 10.1111/j.0022-202X.2004.22711.x
Chiu, 2017, Effect of high glucose, Porphyromonas gingivalis lipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts, J. Periodontal Res., 52, 268, 10.1111/jre.12391
Lamster, 2017, Periodontal disease and the metabolic syndrome, Int. Dent. J., 67, 67, 10.1111/idj.12264
Monje, 2017, Association between diabetes mellitus/hyperglycaemia and peri-implant diseases: systematic review and meta-analysis, J. Clin. Periodontol., 44, 636, 10.1111/jcpe.12724
Gomez-Moreno, 2015, Peri-implant evaluation in type 2 diabetes mellitus patients: a 3-year study, Clin. Oral Implants Res., 26, 1031, 10.1111/clr.12391
Erdogan, 2015, A clinical prospective study on alveolar bone augmentation and dental implant success in patients with type 2 diabetes, Clin. Oral Implants Res., 26, 1267, 10.1111/clr.12450
Eskow, 2017, Dental implant survival and complication rate over 2 years for individuals with poorly controlled type 2 diabetes mellitus, Clin. Implant. Dent. Relat. Res., 19, 423, 10.1111/cid.12465
Tatarakis, 2014, Clinical, microbiological, and salivary biomarker profiles of dental implant patients with type 2 diabetes, Clin. Oral Implants Res., 25, 803, 10.1111/clr.12139
Figuero, 2014, Management of peri-implant mucositis and peri-implantitis, Periodontol. 2000, 66, 255, 10.1111/prd.12049
Mahato, 2016, Management of peri-implantitis: a systematic review, 2010-2015, Springerplus, 5, 10.1186/s40064-016-1735-2
Persson, 2001, Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog, Clin. Oral Implants Res., 12, 595, 10.1034/j.1600-0501.2001.120607.x
Jemt, 2015, Changes of marginal bone level in patients with "progressive bone loss" at Branemark System(R) implants: a radiographic follow-up study over an average of 9 years, Clin. Implant. Dent. Relat. Res., 17, 619, 10.1111/cid.12166
Costa-Almeida, 2019, Metabolic disease epidemics: emerging challenges in regenerative medicine, Trends Endocrinol. Metab., 30, 147, 10.1016/j.tem.2019.01.001
Bellinger, 2006, Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications, ILAR J., 47, 243, 10.1093/ilar.47.3.243
Christoffersen, 2013, The young Gottingen minipig as a model of childhood and adolescent obesity: influence of diet and gender, Obesity (Silver Spring), 21, 149, 10.1002/oby.20249
Litten-Brown, 2010, Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview, Animal, 4, 899, 10.1017/S1751731110000200
Martins, 2014, The dog as a model for peri-implantitis: a review, J. Investig. Surg., 27, 50, 10.3109/08941939.2013.828805
Schwarz, 2015, Animal models for peri-implant mucositis and peri-implantitis, Periodontol. 2000, 68, 168, 10.1111/prd.12064
Marcazzan, 2017, Efficacy of platelet concentrates in bone healing: a systematic review on animal studies - Part B: large-size animal models, Platelets, 29, 338, 10.1080/09537104.2017.1384537
Ragamouni, 2013, Histological analysis of cells and matrix mineralization of new bone tissue induced in rabbit femur bones by Mg-Zr based biodegradable implants, Acta Histochem., 115, 748, 10.1016/j.acthis.2013.03.004
Pearce, 2007, Animal models for implant biomaterial research in bone: a review, Eur. Cell Mater., 13, 1, 10.22203/eCM.v013a01
Bonucci, 2014, Osteoporosis-bone remodeling and animal models, Toxicol. Pathol., 42, 957, 10.1177/0192623313512428
Reichert, 2009, The challenge of establishing preclinical models for segmental bone defect research, Biomaterials, 30, 2149, 10.1016/j.biomaterials.2008.12.050
Roura, 2016, Critical review evaluating the pig as a model for human nutritional physiology, Nutr. Res. Rev., 29, 60, 10.1017/S0954422416000020
Larsen, 2002, Mild streptozotocin diabetes in the Gottingen minipig. A novel model of moderate insulin deficiency and diabetes, Am. J. Physiol. Endocrinol. Metab., 282, E1342, 10.1152/ajpendo.00564.2001
Coli, 2017, Reliability of periodontal diagnostic tools for monitoring peri-implant health and disease, Periodontol. 2000, 73, 203, 10.1111/prd.12162
Zhang, 2018, Association of gender-specific risk factors in metabolic and cardiovascular diseases: an NHANES-based cross-sectional study, J. Investig. Med., 66, 22, 10.1136/jim-2017-000434
Claffey, 2008, Surgical treatment of peri-implantitis, J. Clin. Periodontol., 35, 316, 10.1111/j.1600-051X.2008.01277.x
Sahm, 2011, Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: a prospective, randomized, controlled clinical study, J. Clin. Periodontol., 38, 872, 10.1111/j.1600-051X.2011.01762.x
Tarnow, 2016, Increasing prevalence of peri-implantitis: how will we manage?, J. Dent. Res., 95, 7, 10.1177/0022034515616557
Tomasi, 2019, Efficacy of reconstructive surgical therapy at peri-implantitis-related bone defects. A systematic review and meta-analysis, J. Clin. Periodontol., 46, 21340, 10.1111/jcpe.13070