Nonlinear Differential Equations and Applications NoDEA

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Inertial manifold for the motion of strongly damped nonlinear elastic beams
Nonlinear Differential Equations and Applications NoDEA - Tập 5 - Trang 181-192 - 1998
Giselle Bianchi, Alfredo Marzocchi
We consider a strongly damped semilinear equation arising in the theory of elastic beams. We prove the existence of an exponentially attracting finite-dimensional vector space in the Hilbert space of the solutions (a so-called inertial manifold), and provide some numerical estimates of the dimension of the manifold.
Anti-symmetry of the second eigenfunction of the fractional Laplace operator in a 3-D ball
Nonlinear Differential Equations and Applications NoDEA - Tập 26 - Trang 1-8 - 2019
Rui A. C. Ferreira
In this work we extend a recent result by Dyda et al. (J Lond Math Soc 95(2):500–518, 2017) to dimension 3.
Convergence of maximal monotone operators in a Hilbert space
Nonlinear Differential Equations and Applications NoDEA - Tập 29 - Trang 1-19 - 2022
Alexander A. Tolstonogov
We consider some questions on G-convergence of a sequence of Nemytskii maximal monotone operators defined on the space of square integrable functions acting from a real interval to a separable Hilbert space. Every Nemytskii operator is generated by a time dependent family of maximal monotone operators. The values of these maximal monotone operators are normal cones of closed convex sets. These sets are values of a multivalued mapping from a real interval to a separable Hilbert space. The convergence of Nemytskii maximal monotone operators is used to study the dependence of solutions to sweeping processes on a parameter.
A note on bifurcations from eigenvalues of the Dirichlet-Laplacian with arbitrary multiplicity
Nonlinear Differential Equations and Applications NoDEA - Tập 30 - Trang 1-18 - 2023
Simão Correia, Mário Figueira
In this short note, we consider the elliptic problem $$\begin{aligned} \lambda \phi + \Delta \phi = \eta |\phi |^\sigma \phi ,\quad \phi \big |_{\partial \Omega }=0,\quad \lambda , \eta \in {{\mathbb {C}}}, \end{aligned}$$ on a smooth domain $$\Omega \subset {{\mathbb {R}}}^N$$ , $$N\geqslant 1$$ . The presence of complex coefficients, motivated by the study of complex Ginzburg-Landau equations, breaks down the variational structure of the equation. We study the existence of nontrivial solutions as bifurcations from the trivial solution. More precisely, we characterize the bifurcation branches starting from eigenvalues of the Dirichlet-Laplacian of arbitrary multiplicity. This allows us to discuss the nature of such bifurcations in some specific cases. We conclude with the stability analysis of these branches under the complex Ginzburg-Landau flow.
The curve shortening problem under Robin boundary condition
Nonlinear Differential Equations and Applications NoDEA - Tập 19 - Trang 177-194 - 2011
Kai-Seng Chou, Xiao-Liu Wang
The curve shortening problem for a graph under Robin boundary condition is studied in this paper. The large time behavior of the global solution is shown to depend critically on the parameters in the boundary condition. Some asymptotic behavior of the solution is also discussed.
The Rayleigh–Taylor instability for the Verigin problem with and without phase transition
Nonlinear Differential Equations and Applications NoDEA - Tập 26 - Trang 1-35 - 2019
Jan Prüss, Gieri Simonett, Mathias Wilke
Isothermal compressible two-phase flows in a capillary are modeled with and without phase transition in the presence of gravity, employing Darcy’s law for the velocity field. It is shown that the resulting systems are thermodynamically consistent in the sense that the available energy is a strict Lyapunov functional. In both cases, the equilibria with flat interface are identified. It is shown that the problems are well-posed in an $$L_p$$ -setting and generate local semiflows in the proper state manifolds. The main result concerns the stability of equilibria with flat interface, i.e. the Rayleigh–Taylor instability.
Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations
Nonlinear Differential Equations and Applications NoDEA - - 2000
Marcelo M. Cavalcanti, V. N. Domingos Cavalcanti
Convergence & rates for Hamilton–Jacobi equations with Kirchoff junction conditions
Nonlinear Differential Equations and Applications NoDEA - Tập 27 - Trang 1-69 - 2020
Peter S. Morfe
We investigate rates of convergence for two approximation schemes of time-independent and time-dependent Hamilton–Jacobi equations with Kirchoff junction conditions. We analyze the vanishing viscosity limit and monotone finite-difference schemes. Following recent work of Lions and Souganidis, we impose no convexity assumptions on the Hamiltonians. For stationary Hamilton–Jacobi equations, we obtain the classical $$\epsilon ^{\frac{1}{2}}$$ rate, while we obtain an $$\epsilon ^{\frac{1}{7}}$$ rate for approximations of the Cauchy problem. In addition, we present a number of new techniques of independent interest, including a quantified comparison proof for the Cauchy problem and an equivalent definition of the Kirchoff junction condition.
Mô hình toán học của chuyển động cơ thể rắn qua một số dòng không-Newton Dịch bởi AI
Nonlinear Differential Equations and Applications NoDEA - Tập 20 - Trang 1065-1078 - 2012
J. Ferchichi, J. P. Zolésio
Điểm mới chính của bài viết này là tiết lộ một dạng yếu của chuyển động cơ thể rắn sinh ra từ sự tiến triển của các ranh giới tự do trong các dòng chảy visco-plastic được điều khiển bởi toán tử Norton–Hoff không nén với các hệ số phi trụ. Chúng tôi cung cấp kết quả tồn tại của một giao diện giữa hai chất lỏng không thể trộn lẫn bằng cách sử dụng lý thuyết tiến triển không trơn tru. Chúng tôi chứng minh rằng dòng chảy của chất lỏng được chuyển đổi thành một cơ thể rắn khi độ nhớt của nó đủ lớn. Các kết quả đã thiết lập là các biến thể hoặc mở rộng của các mô hình hiện có.
Optimal control for the conformal CR sub-Laplacian obstacle problem
Nonlinear Differential Equations and Applications NoDEA - - 2024
Pak Tung Ho, Cheikh Birahim Ndiaye
In this paper, we study an optimal control problem associated to the conformal CR sub-Laplacian obstacle problem on a compact pseudohermitian manifold. When the CR Yamabe constant is positive, we show that the optimal controls are equal to their associated optimal states and show the existence of a smooth optimal control which induces a conformal contact form with constant Webster scalar curvature.
Tổng số: 919   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10