Convergence of approximate solutions to an elliptic–parabolic equation without the structure condition
Tóm tắt
We study the Cauchy–Dirichlet problem for the elliptic–parabolic equation
$$b(u)_t + {\rm div} F(u) - \Delta u = f$$
in a bounded domain. We do not assume the structure condition
$$b(z) = b(\hat z) \Rightarrow F(z) = F(\hat z).$$
Our main goal is to investigate the problem of continuous dependence of the solutions on the data of the problem and the question of convergence of discretization methods. As in the work of Ammar and Wittbold (Proc R Soc Edinb 133A(3):477–496, 2003) where existence was established, monotonicity and penalization are the main tools of our study. In the case of a Lipschitz continuous flux F, we justify the uniqueness of u (the uniqueness of b(u) is well-known) and prove the continuous dependence in L
1 for the case of strongly convergent finite energy data. We also prove convergence of the
$${\varepsilon}$$
-discretized solutions used in the semigroup approach to the problem; and we prove convergence of a monotone time-implicit finite volume scheme. In the case of a merely continuous flux F, we show that the problem admits a maximal and a minimal solution.
Tài liệu tham khảo
Alibaud N., Andreianov B., Bendahmane M.: Renormalized solutions of the fractional Laplace equation. C. R. Acad. Sci., Paris, Sér. A 348(13–14), 759–762 (2010)
Alt H.W., Luckhaus S.: Quasilinear elliptic–parabolic differential equations. Mat. Z. 183, 311–341 (1983)
Ammar K., Wittbold P.: Existence of renormalized solutions of degenerate elliptic–parabolic problems. Proc. R. Soc. Edinb. 133A(3), 477–496 (2003)
Andreianov, B.: Quelques problèmes de la théorie des systèmes paraboliques dégénérés non-linéaires et des lois de conservation. PhD thesis, Univ. de Franche-Comté (2000)
Andreianov B., Bendahmane M., Karlsen K.H.: Finite volume schemes for doubly nonlinear degenerate parabolic equations. J. Hyperbolic Differ. Equ. 7(1), 1–67 (2010)
Andreianov B., Bendahmane M., Ruiz Baier R.: Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Models Methods Appl. Sci. 21(2), 307–344 (2011)
Andreianov B., Igbida N.: Revising uniqueness for a nonlinear diffusion-convection equation. J. Differ. Equ. 227(1), 69–79 (2006)
Andreianov B., Igbida N.: Uniqueness for the Dirichlet elliptic–parabolic problem. Proc. R. Soc. Edinb. 137A, 1119–1133 (2007)
Andreianov, B., Igbida, N.: On uniqueness techniques for degenerate convection-diffusion problems. Int. J. Dyn. Syst. Differ. Equ. (accepted). http://hal.archives-ouvertes.fr/hal-00553819
Andreianov B., Gutnic M., Wittbold P.: Convergence of finite volume approximations for a nonlinear elliptic–parabolic problem: a “continuous” approach. SIAM J. Numer. Anal. 42(1), 228–251 (2004)
Bénilan, Ph., Crandall, M.G., Pazy, A.: Nonlinear Evolution Equations in Banach Spaces. Preprint book
Benilan Ph., Wittbold P.: On mild and weak solutions of elliptic–parabolic problems. Adv. Differ. Equ. 1(6), 1053–1073 (1996)
Bénilan, Ph., Wittbold, P.: Sur un problème parabolique-elliptique. Math. Model. Num. Anal. 33(1), 121–127 (1999, in French)
Boccardo, L., Gallouët, Th., Murat, F.: Unicité de la solution de certaines équations elliptiques non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 315(11), 1159–1164 (1992, in French)
Brézis, H., Kinderlehrer, D., Stampacchia, G.: Sur une nouvelle formulation du problème de l’ecoulement à travers une digue. C. R. Acad. Sci., Paris, Sér. A 287, 711–714 (1978, in French)
Carrillo J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)
Carrillo J., Wittbold P.: Uniqueness of renormalized solutions of degenerate elliptic–parabolic problems. J. Differ. Equ. 156(1), 93–121 (1999)
Crandall M.G., Tartar L.: Some relations between nonexpansive and order preserving mappings. Proc. AMS 78(3), 385–390 (1980)
Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press (1992)
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. VII. North-Holland (2000)
Eymard R., Gallouët T., Herbin R., Michel A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41–82 (2002)
Kruzhkov, S.N.: Results on the nature of the continuity of solutions of parabolic equations and some of their applications. Mat. Zametki 6(1), 97–108 (1969); English tr. in Math. Notes 6(1), 517–523 (1969)
Otto F.: L 1 contraction and uniqueness for quasilinear elliptic–parabolic equations. J. Differ. Equ. 131, 20–38 (1996)
Zimmermann, A.: Renormalized solutions for nonlinear partial differential equations with variable exponents and L 1-data. PhD thesis, Technische University Berlin (2010)