Higher differentiability for solutions of a general class of nonlinear elliptic obstacle problems with Orlicz growth
Tóm tắt
In this paper we study a general class of nonlinear elliptic obstacle problems with Orlicz growth. Our purpose is to prove maximal differentiability of the gradient of solutions in the scale of both fractional Sobolev spaces and Besov spaces. Our regularity results extend the known higher differentiability results for such problems with polynomial growth to those with Orlicz growth.
Tài liệu tham khảo
Baisón, A.L., Clop, A., Giova, R., Orobitg, J., Passarelli di Napoli, A.: Fractional differentiability for solutions of nonlinear elliptic equations. Potential Anal. 46(3), 403–430 (2017)
Bildhauer, M., Fuchs, M., Mingione, G.: A priori gradient bounds and local \( C^{1,\alpha } \)-estimates for (double) obstacle problems under non-standard growth conditions. Zeitschrift für Analysis und ihre Anwendungen 20(4), 959–985 (2001)
Bonder, J.F., Salort, A.M.: Fractional order Orlicz-Sobolev spaces. J. Funct. Anal. 277(2), 333–367 (2019)
Byun, S.S., Cho, Y., Wang, L.: Calderón-Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)
Byun, S.S., Liang, S., Ok, J.: Irregular double obstacle problems with Orlicz growth. J. Geom. Anal. 30(2), 1965–84 (2020)
Caselli, M., Gentile, A., Giova, R.: Regularity results for solutions to obstacle problems with Sobolev coefficients. J. Differ. Equ. 269(10), 8308–8330 (2020)
Chlebicka, I, Gwiazda, P Zatorska-Goldstein, A: Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev’s phenomenon. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire (Vol. 36, No. 5, pp. 1431-1465). Elsevier Masson (2019)
Cho, Y.: Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators. J. Differ. Equ. 264(10), 6152–6190 (2018)
Choe, H.J.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Archive Ration. Mech. Anal. 114(4), 383–394 (1991)
Clop, A., Giova, R., Passarelli di Napoli, A.: Besov regularity for solutions of p-harmonic equations. Adv. Nonlinear Anal. 8(1), 762–778 (2019)
Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. In forum mathematicum. Walter de Gruyter. 20(3), 523–556 (2008)
Diening, L., Scharle, T., Schwarzacher, S.: Regularity for parabolic systems of Uhlenbeck type with Orlicz growth. J. Math. Anal. Appl. 472(1), 46–60 (2019)
De Filippis, C.: Regularity results for a class of non-autonomous obstacle problems with (p, q)-growth. J. Math. Anal. Appl. 501(1), 123450 (2021)
Eleuteri, M., Habermann, J.: Calderón-Zygmund type estimates for a class of obstacle problems with p (x) growth. J. Math. Anal. Appl. 372(1), 140–161 (2010)
Eleuteri, M., Passarelli di Napoli, A.: Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. 194, 111434 (2020)
Eleuteri, M., Passarelli di Napoli, A.: Higher differentiability for solutions to a class of obstacle problems. Calc. Var. Partial Differen. Equ. 57(5), 115 (2018)
Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with (p, q) growth. J. Differ. Equ. 204(1), 5–55 (2004)
Evans, L.C.: Partial differential equations. American Mathematical Soc, Washington (2010)
Foralli, N., Giliberti, G.: Higher differentiability of solutions for a class of obstacle problems with variable exponents. J. Differ. Equ. 313, 244–268 (2022)
Gavioli, C: Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions. In Forum Mathematicum (2019) (Vol. 31, No. 6, pp. 1501-1516). De Gruyter
Gavioli, C.: A priori estimates for solutions to a class of obstacle problems under p, q-growth conditions. J. Ellip. Parabol. Equ. 5(2), 325–347 (2019)
Gentile, A. (2021). Higher differentiability results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions. In Forum Mathematicum (Vol. 33, No. 3, pp. 669-695). De Gruyter
Grimaldi, A.G., Ipocoana, E.: Higher fractional differentiability for solutions to a class of obstacle problems with non-standard growth conditions. Adv. Calculus Var. (2022). https://doi.org/10.1515/acv-2021-0074
Gossez, J.P., Mustonen, V.: Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Anal. Theor. Methods Appl. 11(3), 379–392 (1987)
Grimaldi, A.G.: Regularity results for solutions to a class of obstacle problems. Nonlinear Anal. Real World Appl. 62, 103377 (2021)
Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)
Hajłasz, P., Koskela, P.: Sobolev met poincaré ). American Mathematical Soc, Washington (2000)
Haroske, D.D.: Envelopes and sharp embeddings of function spaces. CRC Press, Chapman (2006)
Karppinen, A.: Global continuity and higher integrability of a minimizer of an obstacle problem under generalized Orlicz growth conditions. Manuscr. Math. 164(1), 67–94 (2021)
Koch, L.: Global higher integrability for minimisers of convex obstacle problems with (p, q)-growth. Calculus Var. Partial Differ. Equ. 61(3), 1–28 (2022)
Koskela, P., Yang, D., Zhou, Y.: A characterization of Hajłasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions. J. Funct. Anal. 258(8), 2637–2661 (2010)
Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226(4), 3579–3621 (2011)
Lieberman, G.M.: Regularity of solutions to some degenerate double obstacle problems. Indiana Univ. Math. J. 1, 1009–1028 (1991)
Lieberman, G.M.: The natural generalization of the natural conditions of ladyzhenskaya and uralľtseva for elliptic equations. Commun. Partial Diff. Equ. 16(2–3), 311–361 (1991)
Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20(3), 493–519 (1967)
Michael, J. H. (1984). Regularity for solutions to obstacle problems. In Miniconference on nonlinear analysis (pp. 29-37). Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University
Ok, J.: Calderón-Zygmund estimates for a class of obstacle problems with nonstandard growth. Nonlinear Differ. Equ. Appl. NoDEA 23(4), 50 (2016)
Pick, L., Sickel, W.: Several types of intermediate Besov Orlicz spaces. Math. Nachrichten 164(1), 141–165 (1993)
Rao, M.M., Ren, Z.D.: Theor. Orlicz spaces. M. Dekker, New York (1991)
Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258(18), 4413 (1964)
Yang, D.: New characterizations of Hajłasz-Sobolev spaces on metric spaces. Sci. China Series A Math. 46(5), 675 (2003)