Three-term spectral asymptotics for nonlinear Sturm-Liouville problems
Tóm tắt
We consider the nonlinear Sturm-Liouville problem¶¶
$ -u''(t) + \vert u(t)\vert^{p-1}u(t) + f(u(t)) = \lambda u(t),\\ \enskip t \in I := (0, 1), \enskip u(0) = u(1) = 0, $
¶¶ where
$ p > 1 $
is a constant and
$ \lambda > 0 $
is an eigenvalue parameter. We establish the three-term asymptotics of
$ n-th $
eigencurve
$ \lambda_n(\alpha) $
(associated with eigenfunction
$ u_{n,\alpha} $
with
$ n-1 $
simple interior zeros and
$ \Vert u_{n,\alpha} \Vert_2 = \alpha $
) as
$ \alpha \to \infty $
. We also obtain the corresponding asymptotics of the width of the boundary layer of
$ u_{n,\alpha} $
as
$ \alpha \to \infty $
.