Wellposedness in the Lipschitz class for a quasi-linear hyperbolic system arising from a model of the atmosphere including water phase transitions

Nonlinear Differential Equations and Applications NoDEA - Tập 21 Số 2 - Trang 263-287 - 2014
Ascoli, Davide1, Selvaduray, Steave C.2
1Dipartimento di Matematica, Università di Torino, Torino, Italy
2Dottorato di Ricerca in Matematica, Università di Torino, Torino, Italy

Tóm tắt

In this paper wellposedness is proved for a diagonal quasilinear hyperbolic system containing integral quadratic and Lipschitz continuous terms which prevent from looking for classical solutions in Sobolev spaces. It is the hyperbolic part of the system introduced in [Selvaduray and Fujita Yashima on Atti dell’Accademia delle Scienze di Torino 2011] as a model for air motion in $${\mathbf{R}^3}$$ including water phase transitions. Unknown functions are: the densities ρ of dry air, π of water vapor, σ and ν of water in the liquid and solid state, dependent also on the mass m of the droplets or ice particles. Air velocity v and temperature T are assumed to be known. Solutions (ρ, π, σ, ν) lie in $${L^\infty(]0,\tau^*[; W^{1,\infty}(\Omega))^2 \times L^\infty(]0,\tau^*[; W^{1,\infty}(\Omega^+))^2}$$ , where $${\Omega^+ = \Omega \times]0, +\infty[,\Omega \subset \mathbf{R}^3}$$ is open and bounded, and τ* is sufficiently small; they depend continuously on initial data, temperature and velocities, which are tangent to $${\partial\Omega}$$ ; they lie also in $${W^{1,q}(]0,\tau^*[;L^\infty(\Omega))^2 \times\,W^{1,q}(]0,\tau^*[;L^\infty(\Omega^+))^2}$$ , where $${q \in [1, \infty]}$$ .

Tài liệu tham khảo

citation_journal_title=Invent. Math.; citation_title=Transport equation and Cauchy problem for BV vector fields; citation_author=L. Ambrosio; citation_volume=158; citation_publication_date=2004; citation_pages=227-260; citation_doi=10.1007/s00222-004-0367-2; citation_id=CR1 citation_journal_title=Ann. Fac. Sci. XIV; citation_title=Traces and fine properties of a BD class of vector fields and applications; citation_author=L. Ambrosio, G. Crippa, S. Maniglia; citation_volume=4; citation_publication_date=2005; citation_pages=527-561; citation_id=CR2 citation_journal_title=Nat. Phys.; citation_title=Size distribution of raindrops, in Correspondence; citation_author=A.P. Barros, O.P. Prat, F.Y. Testik, E. Villermaux, B. Bossa; citation_volume=6; citation_publication_date=2010; citation_pages=232; citation_doi=10.1038/nphys1646; citation_id=CR3 citation_journal_title=Sciences et Technologie A (Univ. Constantine); citation_title=Équations monodimensionnelles du mouvement de l’air avec la transition de phase de l’eau; citation_author=H. Belhireche, M.Z. Aissaoui, H. Fujita Yashima; citation_volume=33; citation_publication_date=2011; citation_pages=9-17; citation_id=CR4 Belhireche, H., Aissaoui, M.Z., Fujita Yashima, H.: Solution globale de l’équation de coagulation des gouttelettes en chute. Univ. di Torino, Quaderni scientifici del Dipartimento di Matematica 5, 1–17, (2012) (to appear on Rend. Sem. Mat. Torino) citation_journal_title=Ann. Scuola Norm. Sup. Pisa Cl. Sci.; citation_title=Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficients; citation_author=F. Bouchut, F. James, S. Mancini; citation_volume=4; citation_issue=5; citation_publication_date=2005; citation_pages=1-25; citation_id=CR6 citation_journal_title=Ann. Scuola Norm. Sup. Pisa Cl. Sci.; citation_title=A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form; citation_author=L. Cesari; citation_volume=1; citation_issue=4; citation_publication_date=1974; citation_pages=311-358; citation_id=CR7 citation_journal_title=Ann. di Mat.; citation_title=Sistemi di equazioni a derivate parziali in piú variabili indipendenti; citation_author=M. Cinquini-Cibrario; citation_volume=XLIV; citation_issue=IV; citation_publication_date=1957; citation_pages=357-418; citation_id=CR8 citation_journal_title=Ist. Lombardo Accad. Sci. Lett. Rend. A; citation_title=Ulteriori risultati per sistemi di equazioni quasi lineari a derivate parziali in piú variabili indipendenti; citation_author=M. Cinquini-Cibrario; citation_volume=103; citation_publication_date=1969; citation_pages=373-407; citation_id=CR9 citation_journal_title=J. Math. Anal. Appl; citation_title=Generalized solutions of linear differential equations with discontinuous coefficients and the uniqueness question for multidimensional quasilinear conservation laws; citation_author=D. Conway; citation_volume=18; citation_publication_date=1967; citation_pages=238-251; citation_doi=10.1016/0022-247X(67)90054-6; citation_id=CR10 citation_journal_title=Invent. math.; citation_title=Ordinary differential equations, transport theory and Sobolev spaces; citation_author=R.J. Di Perna, P.L. Lions; citation_volume=98; citation_publication_date=1989; citation_pages=511-547; citation_doi=10.1007/BF01393835; citation_id=CR11 citation_journal_title=Revista Investigación Operacional; citation_title=Modelación matemática del movimiento de la atmósfera con la transición de fase de agua; citation_author=H. Fujita Yashima; citation_volume=34; citation_issue=2; citation_publication_date=2013; citation_pages=93-104; citation_id=CR12 citation_journal_title=Ann. Math. Afr.; citation_title=Système d’équations d’un modèle du mouvement de l’air impliquant la transition de phase de l’eau dans l’atmosphère; citation_author=H. Fujita Yashima, V. Campana, M.Z. Aissaoui; citation_volume=2; citation_publication_date=2011; citation_pages=66-92; citation_id=CR13 citation_journal_title=J. Math. Anal. Appl.; citation_title=A semigroup approach to W 1,∞-solutions to a class of quasilinear hyperbolic systems; citation_author=F. Jochmann; citation_volume=187; citation_publication_date=1994; citation_pages=723-742; citation_doi=10.1006/jmaa.1994.1386; citation_id=CR14 citation_journal_title=Arch. Rat. Mech. Anal.; citation_title=The Cauchy problem for quasi-linear symmetric hyperbolic systems; citation_author=T. Kato; citation_volume=58; citation_publication_date=1975; citation_pages=181-205; citation_doi=10.1007/BF00280740; citation_id=CR15 citation_journal_title=Lect. Notes Num. Appl. Anal.; citation_title=Quasi-linear equations of evolution in nonreflexive Banach spaces; citation_author=T. Kato; citation_volume=5; citation_publication_date=1982; citation_pages=61-76; citation_id=CR16 Kato, T.: Nonlinear equations of evolution in Banach spaces. Proc. Symposia Pure Math. 45(2), 9–23 (1986)(AMS) citation_journal_title=Serdica Math. J.; citation_title=Solution stationnaire du système d’équations de la radiation et de la température dans l’air; citation_author=N. Messaadia, H. Fujita Yashima; citation_volume=39; citation_publication_date=2013; citation_pages=17-36; citation_id=CR18 Selvaduray, S., Fujita Yashima, H.: Equazioni del moto dell’aria con la transizione di fase dell’acqua nei tre stati: gassoso, liquido e solido. Atti dell’Accademia delle Scienze di Torino (2011) citation_journal_title=SIAM J. Numer. Anal.; citation_title=Local error estimates for discontinuous solutions of nonlinear hyperbolic equations; citation_author=E. Tadmor; citation_volume=28; citation_publication_date=1991; citation_pages=891-906; citation_doi=10.1137/0728048; citation_id=CR20