Solutions of a quasilinear Schrödinger–Poisson system with linearly bounded nonlinearities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, R.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65, p. xviii+268. Academic Press, New York (1975)
Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Does the nonlinear Schrödinger equation correctly describe beam equation? Opt. Lett. 18, 411–413 (1993)
Azzollini, A., d’ Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. NonLinéaire 27, 779–791 (2010)
Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Nonlinear Anal. 11, 283–293 (1998)
Benmilh, K., Kavian, O.: Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger–Poisson systems in $${\mathbb{R} }^3$$. Ann. Inst. H. Poincaré Anal. NonLinéaire 25, 449–470 (2008)
Cai, L., Zhang, F.: Semiclassical states for Schrödinger–Poisson system with Hartree-type nonlinearity. Topol. Methods Nonlinear Anal. 59, 779–817 (2022)
Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)
Chen, S., Fiscella, A., Pucci, P., Tang, X.: Semiclassical ground state solutions for critical Schrödinger–Poisson systems with lower perturbations. J. Differ. Equ. 268, 2672–2716 (2020)
Chen, C., Wu, T.-F.: Positive solutions for nonlinear Schrödinger–Poisson systems with general nonlinearity. Nonlinear Differ. Equ. Appl. 29, 58 (2022)
Ding, L., Li, L., Meng, Y.-J., Zhuang, C.-L.: Existence and asymptotic behaviour of ground state solution for quasilinear Schrödinger–Poisson systems in $${\mathbb{R} }^3$$. Topol. Methods Nonlinear Anal. 47, 241–264 (2016)
Du, M., Tian, L., Wang, J., Zhang, F.: Existence and asymptotic behavior of solutions for nonlinear Schrödinger–Poisson systems with steep potential well. J. Math. Phys. 57, 031502 (2016)
Fang, X.: Bound state solutions for some non-autonomous asymptotically cubic Schrödinger–Poisson systems. Z. Angew. Math. Phys. 70, 50 (2019)
Figueiredo, G.M., Siciliano, G.: Quasilinear Schrödinger–Poisson system under an exponential critical nonlinearity: existence and asymptotic behaviour of solutions. Arch. Math. 112, 313–327 (2019)
Figueiredo, G.M., Siciliano, G.: Existence and asymptotic behaviour of solutions for a quasilinear Schrödinger–Poisson system with a critical nonlinearity. Z. Angew. Math. Phys. 71, 130 (2020)
Fortunato, D., Orsina, L., Pisani, L.: Born–Infeld type equations for electrostatic fields. J. Math. Phys. 43, 5698–5706 (2002)
Illner, R., Lange, H., Toomire, B., Zweifel, P.: On quasilinear Schrödinger–Poisson systems. Math. Methods Appl. Sci. 20, 1223–1238 (1997)
Illner, R., Kavian, O., Lange, H.: Stationary solutions of quasilinear Schrödinger–Poisson system. J. Differ. Equ. 145, 1–16 (1998)
Jiang, Y., Wang, Z., Zhou, H.: Positive solutions for Schrödinger–Poisson–Slater system with coercive potential. Topol. Methods Nonlinear Anal. 57, 427–439 (2021)
Jiang, Y., Zhou, H.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)
Li, B., Yang, H.: The modified quantum Wigner system in weighted $$L^2$$-space. Bull. Aust. Math. Soc. 95, 73–83 (2017)
Li, F., Li, Y., Shi, J.: Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term. Calc. Var. Partial. Differ. Equ. 56, 134 (2017)
Liu, Z., Su, J., Wang, Z.-Q.: Solutions of elliptic problems with nonlinearities of linear growth. Calc. Var. Partial. Differ. Equ. 35, 463–480 (2009)
Liu, Z., Su, J., Weth, T.: Compactness results for Schrödinger equations with asymptotically linear terms. J. Differ. Equ. 231, 501–512 (2006)
Liu, Z., Zhang, Z., Huang, S.: Existence and nonexistence of positive solutions for a static Schrödinger–Poisson–Slater equation. J. Differ. Equ. 266, 5912–5941 (2019)
Markovixh, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)
Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
Peng, X., Jia, G.: Existence and asymptotical behavior of solutions for modified quasilinear Schrödinger–Poisson system. Discrete Contin. Dyn. Syst. Ser B. 27, 2325–2344 (2022)
Sun, T., Chen, H., Nieto, J.: On ground state solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 252, 3365–3380 (2012)
Sun, M., Su, J., Zhao, L.: Solutions of a Schrödinger–Poisson system with combined nonlinearities. J. Math. Anal. Appl. 442, 385–403 (2016)
Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in $${\mathbb{R} }^3$$. Discrete Contin. Dyn. Syst. 16, 809–816 (2007)
Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $${\mathbb{R} }^3$$. Calc. Var. Partial. Differ. Equ. 52, 927–943 (2015)
Wei, C., Li, A., Zhao, L.: Existence and asymptotic behaviour of solutions for a quasilinear Schrödinger–Poisson System in $${\mathbb{R} }^3$$. Qual. Theory Dyn. Syst. 21, 82 (2022)
Wei, C., Li, A., Zhao, L.: Existence of nontrivial solutions for a quasilinear Schrödinger-Poisson system in $$mathbb{R}^3$$ with periodic potential. Electron. J. Qual. Theory Differ. Equ. 48, 1–15 (2023)
Wu, T.: Existence and symmetry breaking of ground state solutions for Schrödinger–Poisson systems. Calc. Var. Partial. Differ. Equ. 60, 59 (2021)
Yin, L., Wu, X., Tang, C.: Ground state solutions for an asymptotically 2-linear Schrödinger–Poisson system. Appl. Math. Lett. 87, 7–12 (2019)
Zhang, J., Marcosdo, O.J., Squassina, M.: Schrödinger–Poisson systems with a general critical nonlinearity. Commun. Contemp. Math. 19, 1650028 (2015)
Yu, M., Chen, H.: Existence and uniqueness of multi-bump solutions for nonlinear Schrödinger–Poisson systems. Adv. Nonlinear Stud. 21, 661–681 (2021)