Semi-linear fractional $$\varvec{\sigma }$$ -evolution equations with mass or power non-linearity
Tóm tắt
In this paper we study the global (in time) existence of small data solutions to semi-linear fractional
$$\sigma $$
-evolution equations with mass or power non-linearity. Our main goal is to explain on the one hand the influence of the mass term and on the other hand the influence of higher regularity of the data on qualitative properties of solutions. Using modified Bessel functions we prove some polynomial decay in
$$L^p-L^q$$
estimates for solutions to the corresponding linear fractional
$$\sigma $$
-evolution equations with vanishing right-hand sides. By a fixed point argument the existence of small data solutions is proved for some admissible range of powers p.
Tài liệu tham khảo
Almeida, M.F., Ferreira, L.C.F.: Self-similary, symmetries and asymptotic behavior in Morrey spaces for a fractional wave equation. Differ. Integral Equ. 25, 957–976 (2012)
Cui, S.: Local and global existence of solutions to semilinear parabolic initial value problems. Nonlinear Anal. 43, 293–323 (2001)
D’Abbicco, M., Ebert, M.R., Picon, T.: Global existence of small data solutions to the semilinear fractional wave equation. In Dang, Pei, Ku, Min, Qian, Tao, Rodino, Luigi, G. (ed.) New Trends in Analysis and Interdisciplinary Applications, Trends in Mathematics, Research Perspectives, Birkhäuser, pp. 465–472 (2017)
D’Abbicco, M., Ebert, M.R., Picon, T.H.: The critical exponent(s) for the semi-linear fractional diffusive equation. J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/s00041-018-9627-1
D’Abbicco, M., Lucente, S., Reissig, M.: Semilinear wave equations with effective damping. Chin. Ann. Math. 34B(3), 345–380 (2013)
Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, 309–321 (1990)
Gorenflo, R., Kilbas, A.A, Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications, p. 443. Springer, New York (2014)
Grafakos, L.: Classical Fourier Analysis, 2nd edn. Graduate Texts in Math. 249, Springer, New York (2008)
Hirata, H., Changxing, Miao: Space-time estimates of linear flow and application to some nonlinear integro-differential equations corresponding to fractional-order time derivative. Adv. Differ. Equ. 7(2), 217–236 (2002)
Narazaki, T., Reissig, M.: \(L^{1}\) estimates for oscillating integrals related to structural damped wave models. In: Cicognani, M., Colombini, F., Del Santo, D. (eds.) Studies in Phase Space Analysis with Applications to PDEs, Progress in Nonlinear Differential Equations, Birkhäuser, pp. 215–258 (2013)
Palmieri, A., Reissig, M.: Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II, 33 A4, accepted for publication in Math. Nachr
Pham, D.T., Kainane, M., Reissig, M.: Global existence for semi-linear structurally damped \(\sigma \)-evolution models. J. Math. Anal. Appl. 431, 569–596 (2015)
Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, p. 547. Walter de Gruyter & Co., Berlin (1996)
Stein, E.M., Weiss, G.: Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 31. Princeton University Press, Princeton (1971)