Large Prandtl number asymptotics in randomly forced turbulent convection

Juraj Földes1, Nathan Glatt-Holtz2, Geordie Richards3
1Department of Mathematics, University of Virginia, Charlottesville, USA
2Department of Mathematics, Tulane University, New Orleans, USA
3Department of Mechanical and Aerospace Engineering, Utah State University, Logan, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrachev, A.A., Sarychev, A.V.: Navier–Stokes equations: controllability by means of low modes forcing. J. Math. Fluid Mech. 7(1), 108–152 (2005)

Agrachev, A.A., Sarychev, A.V.: Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing. Commun. Math. Phys. 265(3), 673–697 (2006)

Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81(2), 503 (2009)

Barletta, A., Nield, D.A.: On the Rayleigh–Bénard–Poiseuille problem with internal heat generation. Int. J. Therm. Sci. 57, 1–16 (2012)

Bodenschatz, E., Pesch, W., Ahlers, G.: Recent developments in Rayleigh–Bénard convection. In: Annual review of fluid mechanics, vol. 32, pp. 709–778. Annual Reviews, Palo Alto, CA (2000)

Breuer, M., Hansen, U.: Turbulent convection in the zero Reynolds number limit. Euro. Phys. Lett. 86, 24004 (2009)

Cerrai, S., Glatt-Holtz, N.E.: On the convergence of stationary solutions in the Smoluchowski–Kramers approximation of infinite dimensional systems (2018). arXiv preprint arXiv:1806.05319

Constantin, P., Doering, C.R.: Infinite Prandtl number convection. J. Stat. Phys. 94(1–2), 159–172 (1999)

Constantin, P., Foias, C.: Navier–Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988)

Constantin, P., Glatt-Holtz, N., Vicol, V.: Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. Commun. Math. Phys. 330(2), 819–857 (2014)

Da Prato, G., Zabczyk, J.: Ergodicity for infinite-dimensional systems. In: London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Physica D 240(14–15), 1123–1144 (2011)

Doering, C.R., Constantin, P.: On upper bounds for infinite Prandtl number convection with or without rotation. J. Math. Phys. 42(2), 784–795 (2001)

Doob, J.L.: Asymptotic properties of Markoff transition prababilities. Trans. Am. Math. Soc. 63, 393–421 (1948)

Dudley, R.M.: Real Analysis and Probability, vol. 74. Cambridge University Press, Cambridge (2002)

Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Related Fields 102(3), 367–391 (1995)

Foiaş, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes equations and turbulence Encyclopedia of Mathematics and its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

Földes, J., Glatt-Holtz, N., Richards, G., Thomann, E.: Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing. J. Funct. Anal. 269(8), 2427–2504 (2015)

Földes, J., Glatt-Holtz, N., Richards, G., Whitehead, J.P.: Ergodicity in randomly forced Rayleigh–Bénard convection. Nonlinearity 29(11), 3309 (2016)

Földes, J., Friedlander, S., Glatt-Holtz, N., Richards, G.: Asymptotic analysis for randomly forced MHD. SIAM J. Math. Anal. 49(6), 4440–4469 (2017)

Glatt-Holtz, N.E., Herzog, D.P., Mattingly, J.C.: Scaling and saturation in infinite-dimensional control problems with applications to stochastic partial differential equations. Ann. PDE 4(2), 16 (2018)

Goluskin, D., Spiegel, E.A.: Convection driven by internal heating. Phys. Lett. A 377(1), 83–92 (2012)

Hairer, M., Majda, A.J.: A simple framework to justify linear response theory. Nonlinearity 23(4), 909 (2010)

Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann Math. (2) 164(3), 993–1032 (2006)

Hairer, M., Mattingly, J.C.: Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36(6), 2050–2091 (2008)

Hairer, M., Mattingly, J.C.: A theory of hypoellipticity and unique Ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16(23), 658–738 (2011)

Hairer, M., Mattingly, J.C., Scheutzow, M.: Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probab. Theory Relat. Fields 149(1–2), 223–259 (2011)

Khas’minskii, R.Z.: Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations. Theory Probab. Appl. 5(2), 179–196 (1960)

Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence. Number 194 in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)

Lohse, D., Xia, K.Q.: Small-scale properties of turbulent Rayleigh–Bénard convection. Ann. Rev. Fluid Mech. 42, 335–364 (2010)

Lu, L., Doering, C., Busse, F.: Bounds on convection driven by internal heating. J. Math. Phys. 45(7), 2967–2986 (2004)

Manneville, P.: Rayleigh-Bénard convection: thirty years of experimental, theoretical, and modeling work. In: Mutabazi, I., Wesfreid, J.E., Guyon, E. (eds.) Dynamics of Spatio-Temporal Cellular Structures, Springer Tracts in Modern Physics, vol. 207, pp. 41–65. Springer, New York, NY (2006)

Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality, vol. 192. Cambridge University Press, Cambridge (2012)

Nualart, D.: Malliavin Calculus and its Applications, volume 110 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2009)

Otto, F., Seis, C.: Rayleigh–Bénard convection: improved bounds on the Nusselt number. J. Math. Phys. 52(8), 083702 (2011)

Park, J.: Dynamic bifurcation theory of Rayleigh–Bénard convection with infinite Prandtl number. Discrete Contin. Dyn. Syst. 6(3), 591 (2006)

Roberts, P.H.: Convection in horizontal layers with internal heat generation. Theory J. Fluid Mech. 30(01), 33–49 (1967)

Temam, R.: Navier–Stokes equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI, (2001). Reprint of the 1984 edition

Tritton, D.J., Zarraga, M.N.: Convection in horizontal layers with internal heat generation. Exp. J. Fluid Mech. 30(01), 21–31 (1967)

Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, New York (2008)

Wang, X.: A note on long time behavior of solutions to the Boussinesq system at large Prandtl number. In: Nonlinear Partial Differential Equations and Related Analysis, volume 371 of Contemporary Mathematics, pp. 315–323. American Mathematical Society, Providence, RI (2005)

Wang, X.: Infinite Prandtl number limit of Rayleigh–Bénard convection. Commun. Pure Appl. Math. 57(10), 1265–1282 (2004)

Wang, X.: Large Prandtl number behavior of the Boussinesq system of Rayleigh–Bénard convection. Appl. Math. Lett. 17(7), 821–825 (2004)

Wang, X.: Asymptotic behavior of the global attractors to the Boussinesq system for Rayleigh–Bénard convection at large Prandtl number. Commun. Pure Appl. Math. 60(9), 1293–1318 (2007)

Wang, X.: Bound on vertical heat transport at large Prandtl number. Phys. D 237(6), 854–858 (2008)

Wang, X.: Stationary statistical properties of Rayleigh–Bénard convection at large Prandtl number. Commun. Pure Appl. Math. 61(6), 789–815 (2008)

Weinan, E., Mattingly, J.C.: Ergodicity for the Navier–Stokes equation with degenerate random forcing: finite-dimensional approximation. Commun. Pure Appl. Math. 54(11), 1386–1402 (2001)

Weinan, E., Mattingly, J.C., Sinai, Y.G.: Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Commun. Math. Phys. 224(1), 83–106 (2001). Dedicated to Joel L. Lebowitz

Whitehead, J.P., Doering, C.R.: Internal heating driven convection at infinite Prandtl number. J. Math. Phys. 52(9), 093101 (2011)