Journal of Cellular and Molecular Medicine
SCOPUS (2000-2023)SCIE-ISI
1582-1838
1582-4934
Anh Quốc
Cơ quản chủ quản: Wiley-Blackwell Publishing Ltd , WILEY
Các bài báo tiêu biểu
Sleep disturbance is the most prominent symptom in depressive patients and was formerly regarded as a main secondary manifestation of depression. However, many longitudinal studies have identified insomnia as an independent risk factor for the development of emerging or recurrent depression among young, middle‐aged and older adults. This bidirectional association between sleep disturbance and depression has created a new perspective that sleep problems are no longer an epiphenomenon of depression but a predictive prodromal symptom. In this review, we highlight the treatment of sleep disturbance before, during and after depression, which probably plays an important role in improving outcomes and preventing the recurrence of depression. In clinical practice, pharmacological therapies, including hypnotics and antidepressants, and non‐pharmacological therapies are typically applied. A better understanding of the pathophysiological mechanisms between sleep disturbance and depression can help psychiatrists better manage this comorbidity.
Thrombospondin‐1 (TSP‐1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP‐1. However, the TSP‐1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP‐1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP‐1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor β in those tumor cells that are responsive to TGFβ. In this review, the molecular basis for the role of TSP‐1 in the inhibition of tumor growth and angiogenesis is summarized.
Ramon y Cajal discovered a particular cell type in the gut, which he named ‘interstitial neurons’ more that 100 years ago. In the early 1970s, electron microscopy/electron microscope (EM) studies showed that indeed a special interstitial cell type corresponding to the cells discovered by Cajal is localized in the gut muscle coat, but it became obvious that they were not neurons. Consequently, they were renamed ‘interstitial cells of Cajal’ (ICC) and considered to be pace‐makers for gut motility. For the past 10 years many groups were interested in whether or not ICC are present outside the gastrointestinal tract, and indeed, peculiar interstitial cells were found in: upper and lower urinary tracts, blood vessels, pancreas, male and female reproductive tracts, mammary gland, placenta, and, recently, in the heart as well as in the gut. Such cells, now mostly known as interstitial Cajal‐like cells (ICLC), were given different and confusing names. Moreover, ICLC are only apparently similar to canonical ICC. In fact, EM and cell cultures revealed very particular features of ICLC, which unequivocally distinguishes them from ICC and all other interstitial cells: the presence of 2–5 cell body prolongations that are very thin (less than 0.2 μm, under resolving power of light microscopy), extremely long (tens to hundreds of μm), with a moniliform aspect (many dilations along), as well as caveolae. Given the unique dimensions of these prolongations (very long and very thin) and to avoid further confusion with other interstitial cell types (
For multicellular organisms, the rigorous control of programmed cell death is as important as that of cell proliferation. The mechanisms involved in the regulation of cell death are not yet understood, but a key component is the family of caspases which are activated in a cascade and are responsible for the apoptotic‐specific changes and disassembly of the cell. Although the caspases represent a central point in apoptosis, their activation is regulated by a variety of other factors. Among these, Bcl‐2 family plays a pivotal role in caspases activation, by this deciding whether a cell will live or die. Bcl‐2 family members are known to focus much of their response to the mitochondria level, upstream the irreversible cellular damage, but their functions are not yet well defined. This review summarizes the recent data regarding the Bcl‐2 proteins and the ways they regulate the apoptosis.
Cardiovascular diseases account for more than half of total mortality before the age of 75 in industrialized countries. To develop therapies promoting the compensatory growth of blood vessels could be superior to palliative surgical surgical interventions. Therefore, much effort has been put into investigating underlying mechanisms. Depending on the initial trigger, growth of blood vessels in adult organisms proceeds
Long noncoding
Introduction The metastatic process The cancer stem cell hypothesis Parallels between stem cell behaviour and metastatic behaviour Therapeutic implications Conclusions and future directions
Metastasis is the major cause of death for cancer patients with solid tumours, due mainly to the ineffectiveness of current therapies once metastases begin to form. Further insight into the biology of metastasis is therefore essential in order to gain a greater understanding of this process and ultimately to develop better cancer therapies. Metastasis is an inefficient process, such that very few cells that leave a tumour successfully form macrometastases in distant sites. This suggests that only a small subset of cells can successfully navigate the metastatic cascade and eventually re‐initiate tumour growth to form life‐threatening metastases. Recently, there has been growing support for the cancer stem cell (CSC) hypothesis which stipulates that primary tumours are initiated and maintained by a small subpopulation of cancer cells that possess “stem‐like” characteristics. Classical properties of normal stem cells are strikingly reminiscent of the observed experimental and clinical behaviour of metastatic cancer cells, including an unlimited capacity for self renewal; the requirement for a specific ‘niche’or microenvironment to grow; use of the stromal cell‐derived factor 1 (SDF‐1)/chemokine receptor 4 (CXCR4) axis for migration; enhanced resistance to apoptosis and an increased capacity for drug resistance. Therefore, in addition to playing a role in primary tumour formation, we believe that CSCs are also key players in the metastatic process. We will review the current evidence supporting this idea and discuss the potential implications of the CSC hypothesis with regards to experimental investigation and treatment of metastatic disease.
MicroRNAs are negative regulators of gene expression that play a key role in cell‐type specific differentiation and modulation of cell function and have been proposed to be involved in neovascularization. Previously, using an extensive cloning and sequencing approach, we identified miR‐126 to be specifically and highly expressed in human endothelial cells (EC). Here, we demonstrate EC‐specific expression of miR‐126 in capillaries and the larger vessels