Journal of Applied Toxicology
1099-1263
0260-437X
Anh Quốc
Cơ quản chủ quản: WILEY , John Wiley and Sons Ltd
Các bài báo tiêu biểu
Triclosan [5‐chloro‐2‐(2,4‐dichlorophenoxy)phenol; TCS] is a broad spectrum antibacterial agent used in personal care, veterinary, industrial and household products. TCS is commonly detected in aquatic ecosystems, as it is only partially removed during the wastewater treatment process. Sorption, biodegradation and photolytic degradation mitigate the availability of TCS to aquatic biota; however the by‐products such as methyltriclosan and other chlorinated phenols may be more resistant to degradation and have higher toxicity than the parent compound. The continuous exposure of aquatic organisms to TCS, coupled with its bioaccumulation potential, have led to detectable levels of the antimicrobial in a number of aquatic species. TCS has been also detected in breast milk, urine and plasma, with levels of TCS in the blood correlating with consumer use patterns of the antimicrobial. Mammalian systemic toxicity studies indicate that TCS is neither acutely toxic, mutagenic, carcinogenic, nor a developmental toxicant. Recently, however, concern has been raised over TCS's potential for endocrine disruption, as the antimicrobial has been shown to disrupt thyroid hormone homeostasis and possibly the reproductive axis. Moreover, there is strong evidence that aquatic species such as algae, invertebrates and certain types of fish are much more sensitive to TCS than mammals. TCS is highly toxic to algae and exerts reproductive and developmental effects in some fish. The potential for endocrine disruption and antibiotic cross‐resistance highlights the importance of the judicious use of TCS, whereby the use of TCS should be limited to applications where it has been shown to be effective. Copyright © 2011 John Wiley & Sons, Ltd.
The properties of trivalent and hexavalent chromium are reviewed with respect to acute and chronic oral toxicity, dermal toxicity, systemic toxicity, toxicokinetics, cytotoxicity, genotoxicity and carcinogenicity. The hexavalent chromium compounds appear to be 10–100 times more toxic than the trivalent chromium compounds when both are administered by the oral route. Dermal irritancy and allergy are more frequently caused by contact with soluble hexavalent chromium compounds. The cytotoxicity of soluble and insoluble hexavalent chromium compounds to fibroblasts is 100‐1000 times greater than that demonstrated by trivalent chromium compounds. In short‐term tests, the hexavalent chromium compounds demonstrated genotoxic effects four times more frequently than did the trivalent chromium compounds. Carcinogenicity appears to be associated with the inhalation of the less soluble/insoluble hexavalent chromium compounds. The toxicology of chromium does not reside with the elemental form. It varies greatly among a wide variety of very different chromium compounds. Oxidation state and solubility are particularly important factors in considering the toxicity of chromium with respect to its chemical speciation.
Glyphosate [
Vehicle pollution is an increasing problem in the industrial world. Aromatic nitro compounds comprise a significant portion of the threat. In this review, the class includes nitro derivatives of benzene, biphenyls, naphthalenes, benzanthrone and polycyclic aromatic hydrocarbons, plus nitroheteroaromatic compounds. The numerous toxic manifestations are discussed. An appreciable number of drugs incorporate the nitroaromatic structure. The mechanistic aspects of both toxicity and therapy are addressed in the context of a unifying mechanism involving electron transfer, reactive oxygen species, oxidative stress and antioxidants. Copyright © 2014 John Wiley & Sons, Ltd.
Animal models are important tools to predict human
The effect of silymarin on liver lipid peroxidation and membrane lipid alterations induced by an acute dose of CCI4 was studied. Four groups of animals were treated with CCI4, CCI4 + silymarin, silymarin and its vehicles. CCI4 was given orally (0.4 g 100 g−1 body wt.) and silymarin was administered i.p. All animals were sacrificed 24 h after the treatments. Liver lipid peroxidation was measured and plasma membranes were isolated. Alkaline phosphatase (AP) and gamma‐glutamyl transpeptidase (GGTP) were measured in plasma membranes. Membrane lipids were extracted and then analysed by thin‐layer chromatography by measuring the phosphorus of the phospholipids in each spot. Liver lipid peroxidation was increased about three times in the group receiving CCI4 only. Silymarin cotreatment prevented this increase. Phosphatidylethanolamine (PEA) decreased, while phosphatidylinositol (PI) increased in the plasma membranes isolated from the CCI4‐treated group. Animals that received CCI4 + silymarin showed no decrease in PEA content. A partial prevention of the decrease in phosphatidylinositol content was also observed in plasma membranes of animals treated with silymarin in addition to CCI4. CCI4 decreased gamma‐glutamyl transpeptidase (GGTP) and alkaline phosphatase (AP) membrane activities. Silymarin cotreatment prevented the AP (completely) and the GGTP (partially) falls caused by CCI4. Silymarin by itself increased AP membrane activity.
A significant relationship between the membrane content of phosphatidylethanolamine (PEA) and the AP activity was observed in plasma membranes of treated animals and in normal liver membranes enriched with PEA. These results indicate that silymarin can protect against the alterations induced by CCI4 on the liver plasma membrane through its antioxidant properties by modifying the plasma membrane phospholipid content.
Nanotechnology had matured significantly during the last two decades as it has transitioned from bench top science to applied technology. Even though the issue of safety of nanotechnology has been raised nearly one decade ago, the rapid progress in development and use of nanomaterials has not yet been matched by toxicological investigations. Many recent studies have simply outlined the toxic effects of nanoparticles (NPs), but few have systematically addressed their potentially adverse biological effects on target organs. Some animal models have shown that NPs could be accumulated in various organs. These accumulations can access the vasculature and target other organs, resulting in a potential health risks. After the brief description of current knowledge on the wide applications of several common NPs, their applications and the toxicokinetics, this review focused on effects of NPs on organ functions and mammal health after acute or chronic exposure, and potential mechanisms of action. Due to their physical properties, the liver, kidneys and lung are the main target organs of NPs. Most of NPs show slight toxicity when exposed to animals, while certain toxic effects like oxidative stress generation, inflammation and DNA damage are commonly observed. The severity of NPs toxicity is dependent upon several factors, including exposure dose and administration, NPs chemistry, size, shape, agglomeration state, and electromagnetic properties, which could provide useful information necessary to control the toxicity of NPs. Finally, the safety evaluation of nanotoxicity was addressed.
The aim of this study was to explore the intracellular mechanisms underlying the cardiovascular toxicity of air particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) in a human umbilical vein cell line, EA.hy926. We found that PM2.5 exposure triggered reactive oxygen species (ROS) generation, resulting in a significant decrease in cell viability. Data from Western blots showed that PM2.5 induced phosphorylation of Jun N‐terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen‐activated protein kinase (MAPK) and protein kinase B (AKT), and activation of nuclear factor kappa B (NF‐κB). We further observed a significant increase in expressions of intercellular adhesion molecule‐1 (ICAM‐1) and vascular adhesion molecule‐1 (VCAM‐1) in a time‐ and dose‐dependent manner. Moreover, the adhesion of monocytic THP‐1 cells to EA.hy926 cells was greatly enhanced in the presence of PM2.5. However, N‐acetylcysteine (NAC), a scavenger of ROS, prevented the increase of ROS generation, attenuated the phosphorylation of the above kinases, and decreased the NF‐κB activation as well as the expression of ICAM‐1 and VCAM‐1. Furthermore, ERK inhibitor (U0126), AKT inhibitor (LY294002) and NF‐κB inhibitor (BAY11‐7082) significantly down‐regulated PM2.5‐induced ICAM‐1 and VCAM‐1 expression as well as adhesion of THP‐1 cells, but not JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580), indicating that ERK/AKT/NF‐κB is involved in the signaling pathway that leads to PM2.5‐induced ICAM‐1 and VCAM‐1 expression. These findings suggest PM2.5‐induced ROS may function as signaling molecules triggering ICAM‐1 and VCAM‐1 expressions through activating the ERK/AKT/NF‐κB‐dependent pathway, and further promoting monocyte adhesion to endothelial cells. Copyright © 2015 John Wiley & Sons, Ltd.
The desired effect of all riot control agents is the temporary disablement of individuals by way of intense irritation of the mucous membranes and skin. Generally, riot control agents can produce acute site‐specific toxicity where sensory irritation occurs. Early riot control agents, namely, chloroacetophenone (CN) and chlorodihydrophenarsazine (DM), have been replaced with ‘safer’ agents such as