Quorum-quenching potential of recombinant PvdQ-engineered bacteria for biofilm formation
Tóm tắt
Tài liệu tham khảo
Anwar H, Dasgupta MK, Costerton JW (1990) Testing the susceptibility of bacteria in biofilms to antibacterials. Antimicrob Agents Chemother 34:2043–2046. https://doi.org/10.1128/aac.34.11.2043
Bzdrenga J, Daudé D, Rémy B, Jacquet P, Plener L, Elias M, Chabrière E (2017) Biotechnological applications of quorum quenching enzymes. Chem-Biol Interact 267:104–115. https://doi.org/10.1016/j.cbi.2016.05.028
Choi O, Kang B, Lee Y, Lee Y, Kim J (2021) Pantoeaananatis carotenoid production confers toxoflavin tolerance and is regulated by Hfq-controlled quorum sensing. MicrobiologyOpen 10:e1143. https://doi.org/10.1002/mbo3.1143
Christiaen SEA, Matthijs N, Zhang X-H, Nelis HJ, Bossier P, Coenye T (2014) Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathog Dis 70:271–279. https://doi.org/10.1111/2049-632X.12124
de Celis M, Serrano-Aguirre L, Belda I, Liébana-García R, Arroyo M, Marquina D, de la Mata I, Santos A (2021) Acylase enzymes disrupting quorum sensing alter the transcriptome and phenotype of Pseudomonas aeruginosa, and the composition of bacterial biofilms from wastewater treatment plants. Sci Total Environ 799:149401. https://doi.org/10.1016/j.scitotenv.2021.149401
Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB (2019) Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5:e02192. https://doi.org/10.1016/j.heliyon.2019.e02192
Ghanei-Motlagh R, Mohammadian T, Gharibi D, Khosravi M, Mahmoudi E, Zarea M, El-Matbouli M, Menanteau-Ledouble S (2021) Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture 531:735874. https://doi.org/10.1016/j.aquaculture.2020.735874
Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N (2018) Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathogenesis 121:293–302. https://doi.org/10.1016/j.micpath.2018.05.046
Jiang Q, Chen J, Yang C, Yin Y, Yao K (2019) Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Res Int 2019:2015978. https://doi.org/10.1155/2019/2015978
Khalid SJ, Ain Q, Khan SJ, Jalil A, Siddiqui MF, Ahmad T, Badshah M, Adnan F (2022) Targeting acyl homoserine lactones (ahls) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi J Biol Sci 29:1673–1682. https://doi.org/10.1016/j.sjbs.2021.10.064
Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524. https://doi.org/10.1046/j.1365-2958.2003.03525.x
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 115:E3463-3470. https://doi.org/10.1073/pnas.1717295115
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755. https://doi.org/10.1038/nrmicro.2017.99
Liao X, Ma Y, Daliri BM, Koseki S, Ding T (2019) Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci Tech 95:97–106. https://doi.org/10.1016/j.tifs.2019.11.006
Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain xj12b represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
Ma Y, Lan G, Li C, Cambaza EM, Ding T (2019) Stress tolerance of Staphylococcus aureus with different antibiotic resistance profiles. Microb Pathog 133:103549. https://doi.org/10.1016/j.micpath.2019.103549
Meena H, Mishra R, Ranganathan S, Sarma VV, Ampasala DR, Siddhardha B (2021) Attenuation of quorum sensing mediated virulence factors production and biofilm formation in Pseudomonas aeruginosa PAO1 by Colletotrichum gloeosporioides HM3. Microb Pathog 151:104723. https://doi.org/10.1016/j.micpath.2020.104723
Milivojevic D, Šumonja N, Medić S, Pavic A, Moric I, Vasiljevic B, Senerovic L, Nikodinovic-Runic J (2018) Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathog Dis 76:fty041. https://doi.org/10.1093/femspd/fty041
Mostafa I, Abbas HA, Ashour ML, Yasri A, Sobeh M (2020) Polyphenols from Salix tetrasperma impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Molecules 25:1341. https://doi.org/10.3390/molecules25061341
Murugayah SA, Gerth ML (2019) Engineering quorum quenching enzymes: progress and perspectives. Biochem Soc Trans 47:793–800. https://doi.org/10.1042/BST20180165
Noori A, Kim H, Kim MH, Kim K, Lee K, Oh H-S (2022) Quorum quenching bacteria isolated from industrial wastewater sludge to control membrane biofouling. Bioresour Technol 352:127077. https://doi.org/10.1016/j.biortech.2022.127077
Ondon BS, Li S, Zhou Q, Li F (2020) Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Bioresour Technol 304:122984. https://doi.org/10.1016/j.biortech.2020.122984
Pawar S, Lahiri C (2018) Quorum sensing: an imperative longevity weapon in bacteria. Afr J Microbiol Res 12:96–104. https://doi.org/10.5897/AJMR2017.8751
Raju DV, Nagarajan A, Pandit S, Nag M, Lahiri D, Upadhye V (2022) Effect of bacterial quorum sensing and mechanism of antimicrobial resistance. Biocataly Agricul Biotech 43:102409. https://doi.org/10.1016/j.bcab.2022.102409
Rasmussen TB, Givskov M (2006a) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904. https://doi.org/10.1099/mic.0.28601-0
Reichhardt C, Wong C, da Silva DP, Wozniak DJ, Parsek MR (2018) Both cell-associated and secreted forms of the P. aeruginosa adhesin CDRA promote biofilm formation. Biophysical J 114:228A-229A. https://doi.org/10.1016/j.bpj.2017.11.1272
Sanz-García F, Hernando-Amado S, Martínez JL (2021) Evolution under low antibiotic concentrations: a risk for the selection of Pseudomonas aeruginosa multidrug resistant mutants in nature. Environ Microbiol 24:1279–1293. https://doi.org/10.1111/1462-2920.15806
Taşkan B, Taşkan E, Hasar H (2022) New quorum quenching bacteria for controlling biofilm thickness in the membrane aerated biofilm reactor. Proc Safety Environ Prot 165:57–65. https://doi.org/10.1016/j.psep.2022.06.056
Vogel J, Wakker-Havinga M, Setroikromo R, Quax WJ (2020) Immobilized acylase PvdQ reduces Pseudomonas aeruginosa biofilm formation on PDMS silicone. Front Chem 8:54. https://doi.org/10.3389/fchem.2020.00054
Wang J, Liu Q, Dong D, Hu H, Ren H (2021) Ahls-mediated quorum sensing threshold and its response towards initial adhesion of wastewater biofilms. Water Res 194:116925. https://doi.org/10.1016/j.watres.2021.116925
Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320. https://doi.org/10.1038/nature24624
Yin L, Zhang Y, Azi F, Zhou J, Liu X, Dai Y, Wang Z, Dong M, Xia X (2021) Inhibition of biofilm formation and quorum sensing by soy isoflavones in Pseudomonas aeruginosa. Food Control 133:108629. https://doi.org/10.1016/j.foodcont.2021.108629
Yu P, Wang T, Ye H, Shan H, Ma S (2020) Isolation and identification of pathogenic Vibrio spp. retrieved from diseased Litopenaeus vannamei and beneficial role of some functional probiotic bacteria for control. Aquacul Int 28:1403–1420. https://doi.org/10.1007/s10499-020-00530-3
Zhang W, Li C (2016) Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications. Front Microbiol 6:1535. https://doi.org/10.3389/fmicb.2015.01535