Novel quinazolinone inhibitors of the Pseudomonas aeruginosa quorum sensing transcriptional regulator PqsR
Tài liệu tham khảo
Henry, 1992, Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis, Pediatr. Pulmonol., 12, 158, 10.1002/ppul.1950120306
Coburn, 2015, Lung microbiota across age and disease stage in cystic fibrosis, Sci. Rep., 5, 10241, 10.1038/srep10241
Emerson, 2002, Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis, Pediatr. Pulmonol., 34, 91, 10.1002/ppul.10127
Tacconelli, 2018, WHO pathogens priority list working group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis, Lancet Infect. Dis., 18, 318, 10.1016/S1473-3099(17)30753-3
Clatworthy, 2007, Targeting virulence: a new paradigm for antimicrobial therapy, Nat. Chem. Biol., 3, 541, 10.1038/nchembio.2007.24
Wagner, 2016, Novel strategies for the treatment of Pseudomonas aeruginosa infections, J. Med. Chem., 59, 5929, 10.1021/acs.jmedchem.5b01698
Soukarieh, 2018, Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives, J. Med. Chem., 61, 10385, 10.1021/acs.jmedchem.8b00540
Williams, 2017, Strategies for inhibiting quorum sensing, Emerg. Top. Life Sci., 1, 23, 10.1042/ETLS20160021
Hurley, 2012, Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis, Eur. Respir. J., 40, 1014, 10.1183/09031936.00042012
Williams, 2009, Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules, Curr. Opin. Microbiol., 12, 182, 10.1016/j.mib.2009.01.005
Diggle, 2003, The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can Be produced in the absence of LasR, Mol. Microbiol., 50, 29, 10.1046/j.1365-2958.2003.03672.x
Grandclément, 2016, Quorum quenching: role in nature and applied developments, FEMS Microbiol. Rev., 40, 86, 10.1093/femsre/fuv038
Ryan, 2008, Diffusible signals and interspecies communication in bacteria, Microbiology (Read.), 154, 1845, 10.1099/mic.0.2008/017871-0
Albuquerque, 2012, Quorum sensing in fungi--a review, Med. Mycol., 50, 337, 10.3109/13693786.2011.652201
Nazik, 2019
Lau, 2004, The role of pyocyanin in Pseudomonas aeruginosa infection, Trends Mol. Med., 10, 599, 10.1016/j.molmed.2004.10.002
Lau, 2004, Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice, Infect. Immun., 72, 4275, 10.1128/IAI.72.7.4275-4278.2004
Britigan, 1992, Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury, J. Clin. Invest., 90, 2187, 10.1172/JCI116104
Stintzi, 1998, Quorum sensing and siderophore biosynthesis in Pseudomonas aeruginosa: LasR/LasI mutants exhibit reduced pyoverdine biosynthesis, FEMS Microbiol. Lett., 166, 341, 10.1111/j.1574-6968.1998.tb13910.x
Glessner, 1999, Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility, J. Bacteriol., 181, 1623, 10.1128/JB.181.5.1623-1629.1999
Reimmann, 2002, Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1, Microbiology (Read.), 148, 923, 10.1099/00221287-148-4-923
O’Loughlin, 2013, A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation, Proc. Natl. Acad. Sci. U.S.A., 110, 17981, 10.1073/pnas.1316981110
Lee, 2015, The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein Cell, 6, 26, 10.1007/s13238-014-0100-x
Rampioni, 2014, The art of antibacterial warfare: deception through interference with quorum sensing-mediated communication, Bioorg. Chem., 55, 60, 10.1016/j.bioorg.2014.04.005
Heeb, 2011, Quinolones: from antibiotics to autoinducers, FEMS Microbiol. Rev., 35, 247, 10.1111/j.1574-6976.2010.00247.x
Drees, 2015, PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules, Chem. Biol., 22, 611, 10.1016/j.chembiol.2015.04.012
Coleman, 2008, Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase, J. Bacteriol., 190, 1247, 10.1128/JB.01140-07
Drees, 2016, PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism, J. Biol. Chem., 291, 6610, 10.1074/jbc.M115.708453
Sahner, 2015, Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa, Eur. J. Med. Chem., 96, 14, 10.1016/j.ejmech.2015.04.007
Pistorius, 2011, Biosynthesis of 2-alkyl-4(1H)-Quinolones in Pseudomonas aeruginosa: potential for therapeutic interference with pathogenicity, Chembiochem, 12, 850, 10.1002/cbic.201100014
Liu, 2018, Contribution of the alkylquinolone quorum-sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells, Front. Microbiol., 9, 3018, 10.3389/fmicb.2018.03018
Ilangovan, 2013, Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR), PLoS Pathog., 9, 10.1371/journal.ppat.1003508
Lu, 2012, Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa, Chem. Biol., 19, 381, 10.1016/j.chembiol.2012.01.015
Soukarieh, 2018, In silico and in vitro-guided identification of inhibitors of alkylquinolone-dependent quorum sensing in Pseudomonas aeruginosa, Molecules, 23, 257, 10.3390/molecules23020257
Chatterjee, 2017, Mechanistic understanding of phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa, Appl. Microbiol. Biotechnol., 101, 8223, 10.1007/s00253-017-8546-4
Kitao, 2018, Molecular insights into function and competitive inhibition of Pseudomonas aeruginosa multiple virulence factor regulator, mBio, 9, 10.1128/mBio.02158-17
Starkey, 2014, Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity, PLoS Pathog., 10, 10.1371/journal.ppat.1004321
Gupton, 1987, The preparation of aromatic amidino esters and their reaction with primary amines, Tetrahedron, 43, 1747, 10.1016/S0040-4020(01)81483-6
Fletcher, 2007, A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules, Environ. Microbiol., 9, 2683, 10.1111/j.1462-2920.2007.01380.x
Köhler, 1997, Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 41, 2540, 10.1128/AAC.41.11.2540
Viswanadhan, 1989, J. Chem. Inf. Model., 29, 163, 10.1021/ci00063a006
Aleksić, 2017, Long-chain 4-aminoquinolines as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, ACS Chem. Biol., 12, 1425, 10.1021/acschembio.6b01149
Mikkelsen, 2011, The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in LadS, PLoS One, 6, 10.1371/journal.pone.0029113
Zender, 2020, Flexible fragment growing boosts potency of quorum-sensing inhibitors against Pseudomonas aeruginosa virulence, ChemMedChem, 15, 188, 10.1002/cmdc.201900621
Aleksic, 2019, N-benzyl derivatives of long-chained 4-amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa, ACS Chem. Biol., 14, 2800, 10.1021/acschembio.9b00682
Hossain, 2020, Design, synthesis, and evaluation of compounds capable of reducing Pseudomonas aeruginosa virulence, Eur. J. Med. Chem., 185, 111800, 10.1016/j.ejmech.2019.111800
Winter, 2018, DIALS: implementation and evaluation of a new integration package, Acta Crystallogr. D Struct. Biol., 74, 85, 10.1107/S2059798317017235
McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206
Kovalevskiy, 2018, Overview of refinement procedures within REFMAC5: utilizing data from different sources, Acta Crystallogr. D Struct. Biol., 74, 215, 10.1107/S2059798318000979
Emsley, 2010, Features and development of coot, Acta Crystallogr. Sect. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493
Long, 2017, AceDRG: a stereochemical description generator for ligands, Acta Crystallogr. D Struct. Biol., 73, 112, 10.1107/S2059798317000067
Liebschner, 2017, Polder maps: improving OMIT maps by excluding bulk solvent, Acta Crystallogr. D Struct. Biol., 73, 148, 10.1107/S2059798316018210
Essar, 1990, Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications, J. Bacteriol., 172, 884, 10.1128/JB.172.2.884-900.1990
O’Brien, 2000, Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur. J. Biochem., 267, 5421, 10.1046/j.1432-1327.2000.01606.x