Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity
Tài liệu tham khảo
Trivedi, 2015, An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: a multihost pathogen, J. Tropical Dis., 3
Bressler, 2007, Risk factors for Burkholderia cepacia complex bacteremia among intensive care unit patients without cystic fibrosis: a case-control study, Infect. Contr. Hosp. Epidemiol., 28, 951, 10.1086/519177
Eberl, 2004, Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation, Int. J. Med. Microbiol., 294, 123, 10.1016/j.ijmm.2004.06.022
Schwab, 2014, Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxicmucus, Infect. Immun., 82, 4729, 10.1128/IAI.01876-14
Bernier, 2016, Cyanide toxicity to Burkholderia cenocepacia is modulated by polymicrobial communities and environmental factors, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00725
Smalley, 2015, Quorum sensing protects Pseudomonas aeruginosa against cheating by other species in a laboratory coculture model, J. Bacteriol., 197, 3154, 10.1128/JB.00482-15
O'Brien, 2017, The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett., 364, 1, 10.1093/femsle/fnx128
Boucher, 2009, Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America, Clin. Infect. Dis., 48, 1, 10.1086/595011
Azam, 2018, Updates on the pathogenicity status of Pseudomonas aeruginosa, Drug Discov. Today, 24, 350, 10.1016/j.drudis.2018.07.003
Lee, 2014, The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein and Cell, 6, 26, 10.1007/s13238-014-0100-x
Oliver, 2015, 41
Bhardwaj, 2015, Evolution of MDRs, 9
Waters, 2005, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol., 21, 319, 10.1146/annurev.cellbio.21.012704.131001
LaSarre, 2013, Exploiting quorum sensing to confuse bacterial pathogens, Microbiol. Mol. Biol. Rev., 77, 73, 10.1128/MMBR.00046-12
Williams, 2007, Look who's talking: communication and quorum sensing in the bacterial world, Phil. Trans. Biol. Sci., 362, 1119, 10.1098/rstb.2007.2039
Jiang, 2019, Quorum sensing: a prospective therapeutic target for bacterial diseases, BioMed Res. Int., 15
Borges, 2019, Quorum sensing inhibition by marine bacteria, Mar. Drugs, 17, 10.3390/md17070427
Grandclement, 2016, Quorum quenching: role in nature and applied developments, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev., 40, 86
Hong, 2012, Quorum quenching revisited-from signal decays to signalling confusion, Sensors, 12, 4661, 10.3390/s120404661
Thomas, 2005, The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein, Biochemistry, 44, 7559, 10.1021/bi050050m
Tang, 2015, MomL, a novel marine-derived N-Acyl homoserine lactonase from Muricauda olearia, Appl. Environ. Microbiol., 81, 774, 10.1128/AEM.02805-14
Cai, 2018, Characterization of a novel N-acylhomoserine lactonase RmmL from Ruegeria mobilis YJ3, Mar. Drugs, 16, 1, 10.3390/md16100370
Zhang, 2019, AidB, a novel thermostable N-Acylhomoserine lactonase from the bacterium Bosea sp, Appl. Environ. Microbiol., 85, 10.1128/AEM.02065-19
Fan, 2017, Aii810, a novel cold-adapted N-acylhomoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.01950
Dong, 2018, Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1, Sci. Rep., 8, 1
Torres, 2017, HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family, Sci. Rep., 7, 1, 10.1038/s41598-017-01176-7
Aguilar, 2003, Identification of quorum-sensing-regulated genes of Burkholderia cepacia, J. Bacteriol., 185, 6456, 10.1128/JB.185.21.6456-6462.2003
Dale, 2009, Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa from patients with pulmonary exacerbations of cystic fibrosis, Eur. J. Clin. Microbiol. Infect. Dis., 28, 1275, 10.1007/s10096-009-0774-9
Sokol, 2007, Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs, Future Microbiol., 2, 555, 10.2217/17460913.2.5.555
Chan, 2011, Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia, BMC Microbiol., 11, 10.1186/1471-2180-11-51
Malešević, 2019, Pseudomonas aeruginosa quorum sensing inhibition by clinical isolate Delftia tsuruhatensis 11304: involvement of N-octadecanoylhomoserine lactones, Sci. Rep., 9, 16465, 10.1038/s41598-019-52955-3
McClean, 1997, Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones, Microbiology, 14, 33703
Jovcic, 2011, Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia, Antimicrob. Agents Chemother., 55, 3929, 10.1128/AAC.00226-11
Peng, 2012, A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, 28, 14208, 10.1093/bioinformatics/bts174
Li, 2010, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, 26, 58995, 10.1093/bioinformatics/btp698
Disz, 2010, Accessing the SEED genome databases via Web services API: tools for programmers, BMC Bioinf., 11, 319, 10.1186/1471-2105-11-319
Liu, 2019, Vfdb 2019: a comparative pathogenomic platform with an interactive web interface, Nucleic Acids Res., 47, D687, 10.1093/nar/gky1080
McArthur, 2013, The comprehensive antibiotic resistance database, Antimicrob. Agents Chemother., 57, 3348, 10.1128/AAC.00419-13
Larkin, 2007, Clustal W and clustal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404
Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054
Almagro Armenteros, 2019, SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol., 37, 420, 10.1038/s41587-019-0036-z
Grönlund, 2003, Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli, J. Biol. Chem., 278, 40144, 10.1074/jbc.M301416200
Duan, 2007, Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems, J. Bacteriol., 189, 4827, 10.1128/JB.00043-07
Massai, 2011, A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoylhomoserine lactone quorum sensing signal, Biosens. Bioelectron., 26, 3444, 10.1016/j.bios.2011.01.022
Mei, 2010, AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase, Appl. Environ. Microbiol., 76, 4933, 10.1128/AEM.00477-10
Essar, 1990, Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications, J. Bacteriol., 172, 884, 10.1128/jb.172.2.884-900.1990
Rienzo, 2016, Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation, Process Biochem., 51, 820, 10.1016/j.procbio.2016.04.007
Hanahan, 1983, Studies of transformation of Escherichia coli with plasmids, J. Mol. Biol., 166, 557, 10.1016/S0022-2836(83)80284-8
Spaink, 1987, Promoter in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI, Plant Mol. Biol., 9, 27, 10.1007/BF00017984
Figurski, 1979, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc. Natl. Acad. Sci. Unit. States Am., 76, 1648, 10.1073/pnas.76.4.1648
Miller, 1972
Stachel, 1985, A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression of, Agrobacterium tumefaciens EMBO J., 4, 891, 10.1002/j.1460-2075.1985.tb03715.x
Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method, Methods, 25, 402, 10.1006/meth.2001.1262
El-Shaer, 2016, Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl beta-naphthylamide, J. Med. Microbiol., 65, 1194, 10.1099/jmm.0.000327
Parke, 2001, Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains, Annu. Rev. Phytopathol., 39, 225, 10.1146/annurev.phyto.39.1.225
Vial, 2011, The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation, Environ. Microbiol., 13, 1, 10.1111/j.1462-2920.2010.02343.x
Tedesco, 2015, Investigating the role of the host multidrug resistance associated protein transporter family in Burkholderia cepacia complex pathogenicity using a Caenorhabditis elegans infection model, PloS One, 10, 1, 10.1371/journal.pone.0142883
Bergonzi, 2018, Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties, Sci. Rep., 8, 19, 10.1038/s41598-018-28988-5
Seo, 2011, Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8, Biosci. Biotechnol. Biochem., 75, 1789, 10.1271/bbb.110322
Mayer, 2018, Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978, Front. Cell. Infect. Microbiol., 8, 10.3389/fcimb.2018.00310
Fetzner, 2015, Quorum quenching enzymes, J. Biotechnol., 201, 2, 10.1016/j.jbiotec.2014.09.001
Ng, 2011, Characterization of a phosphotriesterase- like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing, Appl. Environ. Microbiol., 77, 1181, 10.1128/AEM.01642-10
Guendouze, 2017, Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors, Front. Microbiol., 8, 10.3389/fmicb.2017.00227
Sio, 2006, Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1, Infect. Immun., 74, 1673, 10.1128/IAI.74.3.1673-1682.2006
Pustelny, 2009, Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa, Chem. Biol., 16, 1259, 10.1016/j.chembiol.2009.11.013
Venturi, 2004, Quorum sensing in the Burkholderia cepacia complex, Res. Microbiol., 155, 238, 10.1016/j.resmic.2004.01.006
Zhang, 2002, Genetic control of quorum- sensing signal turnover in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. Unit. States Am., 99, 4638, 10.1073/pnas.022056699
Tait, 2009, Turnover of quorum sensing signal molecules modulates cross-kingdom signalling, Environ. Microbiol., 11, 1792, 10.1111/j.1462-2920.2009.01904.x
Huang, 2012, QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261, PloS One, 7, 1
Terwagne, 2013, Quorum sensing and self-quorum quenching in the intracellular pathogen Brucella melitensis, PloS One, 8, 10.1371/journal.pone.0082514