Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity

Microbial Pathogenesis - Tập 149 - Trang 104561 - 2020
Milka Malešević1, Nemanja Stanisavljević1, Katarina Novović1, Natalija Polović2, Zorica Vasiljević3, Milan Kojić1, Branko Jovčić1,4
1Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
2Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
3Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Radoja Dakića 8, 11070, Belgrade, Serbia
4Faculty of Biology, University of Belgrade, Studentski trg 1, 11000, Belgrade, Serbia

Tài liệu tham khảo

Trivedi, 2015, An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: a multihost pathogen, J. Tropical Dis., 3 Bressler, 2007, Risk factors for Burkholderia cepacia complex bacteremia among intensive care unit patients without cystic fibrosis: a case-control study, Infect. Contr. Hosp. Epidemiol., 28, 951, 10.1086/519177 Eberl, 2004, Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation, Int. J. Med. Microbiol., 294, 123, 10.1016/j.ijmm.2004.06.022 Schwab, 2014, Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxicmucus, Infect. Immun., 82, 4729, 10.1128/IAI.01876-14 Bernier, 2016, Cyanide toxicity to Burkholderia cenocepacia is modulated by polymicrobial communities and environmental factors, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00725 Smalley, 2015, Quorum sensing protects Pseudomonas aeruginosa against cheating by other species in a laboratory coculture model, J. Bacteriol., 197, 3154, 10.1128/JB.00482-15 O'Brien, 2017, The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett., 364, 1, 10.1093/femsle/fnx128 Boucher, 2009, Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America, Clin. Infect. Dis., 48, 1, 10.1086/595011 Azam, 2018, Updates on the pathogenicity status of Pseudomonas aeruginosa, Drug Discov. Today, 24, 350, 10.1016/j.drudis.2018.07.003 Lee, 2014, The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein and Cell, 6, 26, 10.1007/s13238-014-0100-x Oliver, 2015, 41 Bhardwaj, 2015, Evolution of MDRs, 9 Waters, 2005, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol., 21, 319, 10.1146/annurev.cellbio.21.012704.131001 LaSarre, 2013, Exploiting quorum sensing to confuse bacterial pathogens, Microbiol. Mol. Biol. Rev., 77, 73, 10.1128/MMBR.00046-12 Williams, 2007, Look who's talking: communication and quorum sensing in the bacterial world, Phil. Trans. Biol. Sci., 362, 1119, 10.1098/rstb.2007.2039 Jiang, 2019, Quorum sensing: a prospective therapeutic target for bacterial diseases, BioMed Res. Int., 15 Borges, 2019, Quorum sensing inhibition by marine bacteria, Mar. Drugs, 17, 10.3390/md17070427 Grandclement, 2016, Quorum quenching: role in nature and applied developments, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev., 40, 86 Hong, 2012, Quorum quenching revisited-from signal decays to signalling confusion, Sensors, 12, 4661, 10.3390/s120404661 Thomas, 2005, The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein, Biochemistry, 44, 7559, 10.1021/bi050050m Tang, 2015, MomL, a novel marine-derived N-Acyl homoserine lactonase from Muricauda olearia, Appl. Environ. Microbiol., 81, 774, 10.1128/AEM.02805-14 Cai, 2018, Characterization of a novel N-acylhomoserine lactonase RmmL from Ruegeria mobilis YJ3, Mar. Drugs, 16, 1, 10.3390/md16100370 Zhang, 2019, AidB, a novel thermostable N-Acylhomoserine lactonase from the bacterium Bosea sp, Appl. Environ. Microbiol., 85, 10.1128/AEM.02065-19 Fan, 2017, Aii810, a novel cold-adapted N-acylhomoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.01950 Dong, 2018, Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1, Sci. Rep., 8, 1 Torres, 2017, HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family, Sci. Rep., 7, 1, 10.1038/s41598-017-01176-7 Aguilar, 2003, Identification of quorum-sensing-regulated genes of Burkholderia cepacia, J. Bacteriol., 185, 6456, 10.1128/JB.185.21.6456-6462.2003 Dale, 2009, Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa from patients with pulmonary exacerbations of cystic fibrosis, Eur. J. Clin. Microbiol. Infect. Dis., 28, 1275, 10.1007/s10096-009-0774-9 Sokol, 2007, Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs, Future Microbiol., 2, 555, 10.2217/17460913.2.5.555 Chan, 2011, Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia, BMC Microbiol., 11, 10.1186/1471-2180-11-51 Malešević, 2019, Pseudomonas aeruginosa quorum sensing inhibition by clinical isolate Delftia tsuruhatensis 11304: involvement of N-octadecanoylhomoserine lactones, Sci. Rep., 9, 16465, 10.1038/s41598-019-52955-3 McClean, 1997, Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones, Microbiology, 14, 33703 Jovcic, 2011, Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia, Antimicrob. Agents Chemother., 55, 3929, 10.1128/AAC.00226-11 Peng, 2012, A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, 28, 14208, 10.1093/bioinformatics/bts174 Li, 2010, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, 26, 58995, 10.1093/bioinformatics/btp698 Disz, 2010, Accessing the SEED genome databases via Web services API: tools for programmers, BMC Bioinf., 11, 319, 10.1186/1471-2105-11-319 Liu, 2019, Vfdb 2019: a comparative pathogenomic platform with an interactive web interface, Nucleic Acids Res., 47, D687, 10.1093/nar/gky1080 McArthur, 2013, The comprehensive antibiotic resistance database, Antimicrob. Agents Chemother., 57, 3348, 10.1128/AAC.00419-13 Larkin, 2007, Clustal W and clustal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404 Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054 Almagro Armenteros, 2019, SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol., 37, 420, 10.1038/s41587-019-0036-z Grönlund, 2003, Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli, J. Biol. Chem., 278, 40144, 10.1074/jbc.M301416200 Duan, 2007, Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems, J. Bacteriol., 189, 4827, 10.1128/JB.00043-07 Massai, 2011, A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoylhomoserine lactone quorum sensing signal, Biosens. Bioelectron., 26, 3444, 10.1016/j.bios.2011.01.022 Mei, 2010, AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase, Appl. Environ. Microbiol., 76, 4933, 10.1128/AEM.00477-10 Essar, 1990, Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications, J. Bacteriol., 172, 884, 10.1128/jb.172.2.884-900.1990 Rienzo, 2016, Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation, Process Biochem., 51, 820, 10.1016/j.procbio.2016.04.007 Hanahan, 1983, Studies of transformation of Escherichia coli with plasmids, J. Mol. Biol., 166, 557, 10.1016/S0022-2836(83)80284-8 Spaink, 1987, Promoter in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI, Plant Mol. Biol., 9, 27, 10.1007/BF00017984 Figurski, 1979, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc. Natl. Acad. Sci. Unit. States Am., 76, 1648, 10.1073/pnas.76.4.1648 Miller, 1972 Stachel, 1985, A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression of, Agrobacterium tumefaciens EMBO J., 4, 891, 10.1002/j.1460-2075.1985.tb03715.x Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method, Methods, 25, 402, 10.1006/meth.2001.1262 El-Shaer, 2016, Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl beta-naphthylamide, J. Med. Microbiol., 65, 1194, 10.1099/jmm.0.000327 Parke, 2001, Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains, Annu. Rev. Phytopathol., 39, 225, 10.1146/annurev.phyto.39.1.225 Vial, 2011, The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation, Environ. Microbiol., 13, 1, 10.1111/j.1462-2920.2010.02343.x Tedesco, 2015, Investigating the role of the host multidrug resistance associated protein transporter family in Burkholderia cepacia complex pathogenicity using a Caenorhabditis elegans infection model, PloS One, 10, 1, 10.1371/journal.pone.0142883 Bergonzi, 2018, Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties, Sci. Rep., 8, 19, 10.1038/s41598-018-28988-5 Seo, 2011, Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8, Biosci. Biotechnol. Biochem., 75, 1789, 10.1271/bbb.110322 Mayer, 2018, Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978, Front. Cell. Infect. Microbiol., 8, 10.3389/fcimb.2018.00310 Fetzner, 2015, Quorum quenching enzymes, J. Biotechnol., 201, 2, 10.1016/j.jbiotec.2014.09.001 Ng, 2011, Characterization of a phosphotriesterase- like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing, Appl. Environ. Microbiol., 77, 1181, 10.1128/AEM.01642-10 Guendouze, 2017, Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors, Front. Microbiol., 8, 10.3389/fmicb.2017.00227 Sio, 2006, Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1, Infect. Immun., 74, 1673, 10.1128/IAI.74.3.1673-1682.2006 Pustelny, 2009, Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa, Chem. Biol., 16, 1259, 10.1016/j.chembiol.2009.11.013 Venturi, 2004, Quorum sensing in the Burkholderia cepacia complex, Res. Microbiol., 155, 238, 10.1016/j.resmic.2004.01.006 Zhang, 2002, Genetic control of quorum- sensing signal turnover in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. Unit. States Am., 99, 4638, 10.1073/pnas.022056699 Tait, 2009, Turnover of quorum sensing signal molecules modulates cross-kingdom signalling, Environ. Microbiol., 11, 1792, 10.1111/j.1462-2920.2009.01904.x Huang, 2012, QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261, PloS One, 7, 1 Terwagne, 2013, Quorum sensing and self-quorum quenching in the intracellular pathogen Brucella melitensis, PloS One, 8, 10.1371/journal.pone.0082514